scholarly journals Numerical Investigation on Flexural Buckling Behavior of Hot-rolled Steel Columns at Elevated Temperatures

Author(s):  
Samer Nemer ◽  
Ferenc Papp

In this paper, a numerical investigation on the global buckling capacity of the axially compressed steel columns with hot-rolled I cross-section at elevated temperatures is presented. Geometrically and materially non-linear finite element model and the ABAQUS software were used to determine the buckling resistance. The numerical ABAQUS model was validated using experimental results available in the literature, and then the validated numerical model was used to generate a database of load-carrying capacity. The parametric study covered three different cross-section classes (class 1, 2 and 3), ten different non-dimensional slenderness ̄λ = 0.5, 0.6, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.0), three different temperatures (400°C, 500°C, 600°C), and two stress-strain constitutive relations including (the nonlinear material model adopted in the European guidance for structural fire design EN1993-1-2, and a Bilinear material model), with and without residual stress. The influence of the model parameters on the load capacity of steel columns at elevated temperatures was evaluated. The results of the parametric study were compared with the results of the simplified calculation model presented in EN1993-1-2.

2017 ◽  
Vol 8 (4) ◽  
pp. 338-353 ◽  
Author(s):  
Chrysanthos Maraveas

Purpose The DELTA® beam composite floor system is a recently developed shallow floor type that has seen many applications in contemporary construction. It involves partially encasing DELTA® steel beams in concrete, with the lower flange remaining exposed. Besides the satisfactory behavior of the system at ambient conditions, understanding its response under elevated temperatures is critical in evaluating its overall performance. Despite certification from the manufacturing company that the system has adequate fire resistance, its behavior under fire conditions has neither been investigated to depth nor reported in detail. The purpose of this paper is the detailed numerical investigation of their behavior in fire. For this reason, the finite element method was implemented in this paper to simulate the response of such beams subjected to fire. Material properties were modeled according to the Eurocodes. The coupled thermal-structural parametric analyses involved four different variations of the “shortest” and “deepest” cross-section (eight case studies in total) specified by the manufacturing company. Other simulations of these cross-sections, in which either the thermal expansion or the structural load were not taken into account, were carried out for comparison purposes. Design/methodology/approach The methodology for simulating such systems, which has been successfully implemented and validated against fire test results elsewhere (Maraveas et al., 2012) was also followed here. To investigate the statement made by Maraveas et al. (2014) and the equations proposed by Zaharia and Franssen (2012) that the insulation is not so effective for “short” cross-sections, two beams, one with a D20-200 (Deltabeam Technical Manual, 2013) cross-section (shallowest section) and one with a D50-600 (Deltabeam Technical Manual, 2013) cross-section (deepest section), were simulated in this paper for comparison purposes. Additionally, reasonable assumptions were made for the cross-sectional dimensions not specified by the manufacturer (Deltabeam Technical Manual, 2013) and parametric analyses were carried out to investigate their effect on the structural response of the system. Findings Composite DELTA® beams can achieve fire resistances ranging from 120 to 180 min, depending on the depth and geometry of their cross-section, with deeper sections displaying a better fire response. The intense thermal bowing that occurs when these beams are heated from below has a more pronounced effect, in terms of thermally induced deflections for deeper sections. The satisfactory fire resistance of these beams is achieved due to the action of the concrete encased web and the reinforcement which compensate for the loss of the exposed lower flange. Increasing the thickness of the web in deeper sections improves their fire rating up to 180 min. The thickness of the lower flange affects the fire rating of the beams only in a minor way. Practical/implications The paper describes a numerical methodology to estimate the fire resistance of complex flooring systems.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


Author(s):  
M Bahiraei ◽  
S. I. Vasefi ◽  
K. Zabihi ◽  
S. M. Hoseinalipour

2020 ◽  
Vol 151 ◽  
pp. 106735 ◽  
Author(s):  
Zongxing Zhang ◽  
Shanhua Xu ◽  
Biao Nie ◽  
Rou Li ◽  
Zhen Xing

2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


2021 ◽  
Vol 8 (3) ◽  
pp. 32
Author(s):  
Dimitrios P. Sokolis

Multiaxial testing of the small intestinal wall is critical for understanding its biomechanical properties and defining material models, but limited data and material models are available. The aim of the present study was to develop a microstructure-based material model for the small intestine and test whether there was a significant variation in the passive biomechanical properties along the length of the organ. Rat tissue was cut into eight segments that underwent inflation/extension testing, and their nonlinearly hyper-elastic and anisotropic response was characterized by a fiber-reinforced model. Extensive parametric analysis showed a non-significant contribution to the model of the isotropic matrix and circumferential-fiber family, leading also to severe over-parameterization. Such issues were not apparent with the reduced neo-Hookean and (axial and diagonal)-fiber family model, that provided equally accurate fitting results. Absence from the model of either the axial or diagonal-fiber families led to ill representations of the force- and pressure-diameter data, respectively. The primary direction of anisotropy, designated by the estimated orientation angle of diagonal-fiber families, was about 35° to the axial direction, corroborating prior microscopic observations of submucosal collagen-fiber orientation. The estimated model parameters varied across and within the duodenum, jejunum, and ileum, corroborating histologically assessed segmental differences in layer thicknesses.


Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Svenja Kalt ◽  
Karl Ludwig Stolle ◽  
Philipp Neuhaus ◽  
Thomas Herrmann ◽  
Alexander Koch ◽  
...  

The consideration of the thermal behavior of electric machines is becoming increasingly important in the machine design for electric vehicles due to the adaptation to more dynamic operating points compared to stationary applications. Whereas, the dependency of machine efficiency on thermal behavior is caused due to the impact of temperature on the resulting loss types. This leads to a shift of efficiency areas in the efficiency diagram of electric machines and has a significant impact on the maximum load capability and an impact on the cycle efficiency during operation, resulting in a reduction in the overall range of the electric vehicle. Therefore, this article aims at analyzing the thermal load limits of induction machines in regard to actual operation using measured driving data of battery electric vehicles. For this, a thermal model is implemented using MATLAB® and investigations to the sensitivity of model parameters as well as analysis of the continuous load capacity, thermal load and efficiency in driving cycles under changing boundary conditions are conducted.


Sign in / Sign up

Export Citation Format

Share Document