Две модели резинокордного слоя

Author(s):  
С. В. Шешенин ◽  
◽  
Икунь Ду ◽  

Breker layers in a pneumatic tire are an important part in the tire construction. These layers have a metal cord resulting in substantial bending stiffness. When homogenizing such layers, a “shave” method is applied to the breaker layer. This results in a thinner layer having adequate stiffness in both tension and bending. In this work, a phenomenological approach is used to obtain the effective properties of a homogeneous anisotropic hyper elastic material of an equivalent layer. Two models utilize transverse isotropic or orthotropic potential used to describe the homogenized properties. Comparison is made between these models for the “shaved” rubber-cord layer based on numerical experiments. In both cases, the potentials are built on the basis of the Treloar or Mooney potentials. Note that in the case of an inhomogeneous thin layer, the traditional definition of homogenization needs to be modified. In previous works of the authors, it was proposed to determine 3D averaged elastic properties of a layer by surrounding it with a homogeneous material. This makes it possible to correctly take into account the fact that the boundary effect from the upper to lower surfaces that penetrates through the whole periodicity cell. A set of local problems formulated for the periodicity cell is proposed. This set is sufficient for determining elastic potential material parameters. Nonlinear local problems on a periodic cell are solved and the material constants of the elastic potential are determined. The applicability of the orthotropic potential (second model) is determined for the “shaved” layer. It was found that orthotropic properties are manifested relative to longitudinal shears. The results show the suitability of the proposed potential and the scheme for determining the material parameters.

2017 ◽  
Vol 869 ◽  
pp. 94-111 ◽  
Author(s):  
José L. York Duran ◽  
Charlotte Kuhn ◽  
Ralf Müller

On the macrolevel metal matrix composites (MMCs) resemble a homogeneous material. However, on the microlevel they have an inhomogeneous microstructure. This paper will show how heterogeneities affect the effective macroscopic properties the material, i.e. the effective properties. This investigation is done using computational homogenization techniques. Finite element (FE) simulations were conducted in ABAQUS in combination with MATLAB, using material parameters for aluminum alloy AA2124 and silicon carbide SiC to develop a representative volume element (RVE) of the MMC AMC217xe.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Federico J. Sabina ◽  
Yoanh Espinosa-Almeyda ◽  
Raúl Guinovart-Díaz ◽  
Reinaldo Rodríguez-Ramos ◽  
Héctor Camacho-Montes

The development of micromechanical models to predict the effective properties of multiphase composites is important for the design and optimization of new materials, as well as to improve our understanding about the structure–properties relationship. In this work, the two-scale asymptotic homogenization method (AHM) is implemented to calculate the out-of-plane effective complex-value properties of periodic three-phase elastic fiber-reinforced composites (FRCs) with parallelogram unit cells. Matrix and inclusions materials have complex-valued properties. Closed analytical expressions for the local problems and the out-of-plane shear effective coefficients are given. The solution of the homogenized local problems is found using potential theory. Numerical results are reported and comparisons with data reported in the literature are shown. Good agreements are obtained. In addition, the effects of fiber volume fractions and spatial fiber distribution on the complex effective elastic properties are analyzed. An analysis of the shear effective properties enhancement is also studied for three-phase FRCs.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3063-3073 ◽  
Author(s):  
Leonid Berlyand

We consider a mathematical model which describes an ideal superfluid with a large number of thin insulating rods and an ideal superconductor reinforced by such rods. We suggest a homogenization procedure for calculating effective properties of both composite media. From the numerical point of view the procedure amounts to solving a linear problem in a periodicity cell of unit size.


2020 ◽  
Author(s):  
Vladimir Levin

<p>Development of the homogenization algorithms for the heterogeneous periodic and non-periodic materials has applications in different domains and considers different types of upscaling techniques (Fish, 2008, Bagheri, Settari, 2005, Kachanov et al. 1994, Levin et al. 2003).</p><p>The current presentation discusses an algorithm implemented in CAE Fidesys (Levin, Zingerman, Vershinin 2015, 2017) for calculating the effective mechanical characteristics of a porous-fractured medium (Myasnikov et al., 2016) at the scale of a periodicity cell dissected by a group of plane-parallel cracks modeled by elastic bonds with specified stiffnesses in the normal and tangential directions in accordance with the method of modeling cracks based on elastic bonds (Bagheri, Settari, 2005, 2006) In this case, the relationship between the components of the displacement vector and the force vector (normal stresses at the fracture’s boundaries) in the normal and tangential directions will be diagonal, neglecting the effects of dilatancy and shear deformations as a result of normal stresses.<br>The presentation also considers the general case of the relationship between displacements and forces along the fracture’s boundaries, taking into account shear deformations (which leads to an increase in the effective Young's modulus by 30%), and additionally a cell’s geometrical model is generalized by the presence of pores in the matrix’s material. The results of numerical studies on mesh convergence, the influence of periodicity cell sizes and fracture’s thicknesses on the computed effective properties are presented. A comparison between analytical (Kachanov, Tsukrov 1994, 2000) and numerical results obtained in CAE Fidesys for the effective elastic moduli estimation for particular cases of geometrical models of the periodicity cell is shown.<br>The developed algorithm is used to evaluate the effective mechanical properties of a digital core model obtained by the results of CT-scan data interpretation. A comparison is made with the results of laboratory physical core tests. Additionaly an algorithm implemented in CAE Fidesys and the results for the effective thermal conductivity and the effective coefficient of thermal expansion estimation are given for the considered test rock specimen.</p><p>The reported study was funded by Russian Science Foundation project № 19-77-10062. </p><p> </p><p> </p><ol><li>Bagheri, M., Settari, A. Effects of fractures on reservoir deformation and flow modeling // Can. Geotech. J. 43: 574–586 (2006) doi:10.1139/T06-024</li> <li>Bagheri, M., Settari, A. Modeling of Geomechanics in Naturally Fractured Reservoirs – SPE-93083-MS, SPE Reservoir Simulation Symposium, Houston, USA, 2005.</li> <li>Fish J., Fan R. Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading // International Journal for Numerical Methods in Engineering. 2008. V. 76. – P. 1044–1064.</li> <li>Kachanov M., Tsukrov I., Shafiro B. Effective moduli of a solid with holes and cavities of various shapes// Appl. Mech. Reviews. 1994. V. 47, № 1, Part 2. P. S151-S174.</li> </ol>


2016 ◽  
Vol 28 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Jan Sladek ◽  
Vladimir Sladek ◽  
Ernian Pan

The finite element method is proposed to analyze coated fiber composites with piezoelectric and piezomagnetic phases. The computational homogenization technique is applied for fiber composites with magnetoelectroelastic properties to determine effective material parameters. The evolution of the magnetoelectroelastic fields at the macroscopic level is resolved through the incorporation of the microstructural response. The microstructural analyses are performed on the representative volume element, where essential physical geometrical information about the microstructural components is included. Circular cross section of fibers is considered in numerical analyses. A thin coating layer is considered on the surface of the piezoelectric fiber which is embedded in the piezomagnetic matrix. Influence of the coating layer on the effective material properties is analyzed.


Author(s):  
Sarah C. Baxter ◽  
Katherine A. Acton

The properties of composite materials with random microstructures are often defined by homogenizing the properties of a representative volume element (RVE). This results in the effective properties of an equivalent homogeneous material. This approach is useful for predicting a global response but smooths the underlying variability of the composite's properties resulting from the random microstructure. Statistical volume elements (SVEs) are partitions of an RVE. Homogenization of individual SVEs produces a population of apparent properties. While not as rigorously defined as RVEs, SVEs can still provide a repeatable framework to characterize mesoscale variability in composite properties. In particular, their statistical properties can be used as the basis for simulation studies. For this work, Voronoi tessellation was used to partition RVEs into SVEs and apparent properties developed for each SVE. The resulting field of properties is characterized with respect to its spatial autocorrelation and distribution. These autocorrelation and distribution functions (PDFs) are then used as target fields to simulate additional property fields, with the same probabilistic characteristics. Simulations based on SVEs may provide a method of further exploring the uncertainty within the underlying approximations or of highlighting effects that might be experimentally measurable or used to validate the use of an SVE mesoscale analysis in a specific predictive model. This work presents an update to an existing simulation technique developed by Joshi (1975, “A Class of Stochastic Models for Porous Media,” Ph.D. thesis, University of Kansas, Lawrence, KS) and initially extended by Adler et al. (1990, “Flow in Simulated Porous Media,” Int. J. Multiphase Flow, 16(4), pp. 691–712). The simulation methodology is illustrated for three random microstructures and two SVE partitioning sizes.


2011 ◽  
Vol 104 (2) ◽  
pp. 733-737 ◽  
Author(s):  
Jing-Jing Yang ◽  
Ting-Hua Li ◽  
Ming Huang ◽  
Meng Cheng

2017 ◽  
Vol 17 (05) ◽  
pp. 1740015 ◽  
Author(s):  
I. V. Andrianov ◽  
J. Awrejcewicz ◽  
B. Markert ◽  
G. A. Starushenko

Free vibrations of a composite membrane with a hexagonal lattice circular inclusion are investigated. We aim at a study of the lower frequency spectrum, i.e. it is assumed that the minimum space period of the eigenform is essentially larger than the characteristic dimension of the cell periodicity of the analyzed structure. This implies a possibility of approximating the composite structure by the homogenized one with effective characteristics. The latter is yielded by the multi-scale homogenization approach. Introduction of slow and fast variables yields both counterpart quasistatic local problem regarding the periodically repeated cell and global (homogenized) dynamic problem for homogeneous material with effective properties. The most complicated part of this approach concerns in finding a solution to the local problem. It has been analytically found in the presented paper for relatively large inclusion sizes using lubrication approach. The performed numerical validation of the obtained results shows high accuracy of the implemented approach.


2021 ◽  
Vol 11 (4) ◽  
pp. 1867
Author(s):  
Monica Tapia ◽  
Y. Espinosa-Almeyda ◽  
R. Rodríguez-Ramos ◽  
José A. Otero

A three-dimensional semi-analytical finite element method (SAFEM-3D) is implemented in this work to calculate the effective properties of periodic elastic-reinforced nanocomposites. Different inclusions are also considered, such as discs, ellipsoidals, spheres, carbon nanotubes (CNT) and carbon nanowires (CNW). The nanocomposites are assumed to have isotropic or transversely isotropic inclusions embedded in an isotropic matrix. The SAFEM-3D approach is developed by combining the two-scale asymptotic homogenization method (AHM) and the finite element method (FEM). Statements regarding the homogenized local problems on the periodic cell and analytical expressions of the effective elastic coefficients are provided. Homogenized local problems are transformed into boundary problems over one-eighth of the cell. The FEM is implemented based on the principle of the minimum potential energy. The three-dimensional region (periodic cell) is divided into a finite number of 10-node tetrahedral elements. In addition, the effect of the inclusion’s geometrical shape, volume fraction and length on the effective elastic properties of the composite with aligned or random distributions is studied. Numerical computations are developed and comparisons with other theoretical results are reported. A comparison with experimental values for CNW nanocomposites is also provided, and good agreement is obtained.


Sign in / Sign up

Export Citation Format

Share Document