scholarly journals Synthesis of 5-Nitro-1,2,4-Triazol-3-One Via: Conventional Heating, Microwave and Ultrasonication

In this laboratory experiment 2,4-dihydro-3H-1,2,5-Triazol-3-one(TO) was synthesized using mixture of semicarbazide hydrochloride(SC.HCl) and formic acid in 1:3 mole ratio. TO was further nitrated using 70% nitric acid (HNO3) to produce2,4-dihydro-3H-5-nitro-1,2,5-triazol-3-one(NTO). For the nitration reaction three techniques were employed: conventional heating, microwave assisted and ultrasound assisted reaction. It was found that the extent of gases generation during the reaction was reduced when microwave and ultrasound was employed as compared to the conventional heating method. The time taken for the completion of the reaction was only 15 min when microwave was used.

2018 ◽  
Vol 18 (1) ◽  
pp. 53
Author(s):  
Ratnaningsih Eko Sardjono ◽  
Iqbal Musthapa ◽  
Iis Rosliana ◽  
Fitri Khoerunnisa ◽  
Galuh Yuliani

A new versatile macromolecule cyclic C-3,7-dimethyl-7-hydroxycalix[4]resorcinarene (CDHHK4R) has been synthesized from a fragrance agent, 7-hydroxycitronellal, via microwave irradiation. The reaction utilized a domestic microwave oven at various irradiation time and power to yield an optimum condition. As a comparison, the conventional heating method was also employed for the synthesis of the same calix[4]resorcinarene. Compared to the conventional method, microwave-assisted reaction effectively reduced the reaction time, the amount of energy consumption and the waste production. It is found that the synthesis of CDHHK4R by microwave irradiation yielded 77.55% of product, higher than by conventional heating which was only 62.17%.


2018 ◽  
Vol 28 (3) ◽  
pp. 141
Author(s):  
Ahmed Mutanabbi Abdula ◽  
Ghazwan Ali Salman ◽  
Hamid H. Mohammed

A series of ten chalcone-substituted quinoxalines (4a-e), (3a-e) starting from 1-(phenylquinoxalin-2-yl)ethanone and 1-(3-methylquinoxalin-2-yl)ethanone have been synthesized using conventional heating and ultrasound-assisted methods. Furthermore, novel of five quinoxaline derivatives including pyrazoline, isoxazole, pyrimidin-2-one, N-acylpyrazoline and pyridin-2-one moieties were also prepared from the reaction of chalcone compound 4a with different cyclization reagents using the same strategy. The structures of all synthesized compounds were established on the basis of FT-IR, 1H-NMR and 13C-NMR. The ultrasonic irradiation method provide several advantages over conventional heating method, including shorter reaction times (30-90 min.) and good percentage yields (65% - 88%), comparing with conventional protocol (5 to 20 hrs. with 30% to 55% reaction yields).


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
L. Achutha ◽  
R. Parameshwar ◽  
B. Madhava Reddy ◽  
V. Harinadha Babu

Quinoxaline-incorporated Schiff bases(4a–j)were synthesized by the condensation of 2-[(3-methylquinoxalin-2-yl)oxy]acetohydrazide(3)with indole-3-carbaldehyde, furfuraldehyde, 5-(4-nitrophenyl)-2-furfuraldehyde, and substituted benzaldehydes under conventional and microwave irradiation methods. The microwave method was found to be remarkably successful with higher yields, less reaction time, and environmentally friendly compared to conventional heating method. The chemical structures of the synthesized compounds have been confirmed by analytical and spectral data. All the compounds have been evaluated for antitubercular and anti-inflammatory activities.


RSC Advances ◽  
2014 ◽  
Vol 4 (110) ◽  
pp. 65088-65097 ◽  
Author(s):  
Airui Zhang ◽  
Hongyan Xiao ◽  
Chengcheng Peng ◽  
Shuhui Bo ◽  
Huajun Xu ◽  
...  

Under microwave (MW) irradiation at a proper temperature, three chromophores (A, B and C) with julolidinyl-based donors and TCF or CF3-Ph-TCF acceptors have been synthesized in high overall yields compared with the conventional heating method.


2019 ◽  
Vol 16 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Renu Bala ◽  
Vandana Devi ◽  
Pratibha Singh ◽  
Navjot Kaur ◽  
Pawandeep Kaur ◽  
...  

Background: Tetrahydroindazole, a member of the fused-pyrazole system, is a least studied class of heterocyclic compounds owing to its scarcity in nature. However, a large number of synthetically prepared tetrahydroindazoles are known to show a variety of biological activities such as interleukin- 2 inducible T-Cell kinase inhibitors, AMPA receptor positive allosteric modulators, antitumor, antituberculosis, anti-inflammatory and antimicrobial activities. Vilsmeier-Haack reaction is one of the most important chemical reactions used for formylation of electron rich arenes. Even though Vilsmeier- Haack reaction was studied on a wide variety of hydrazones derived from active methylene compounds, literature lacks the examples of the use of 4-substituted cyclohexanones as a substrate for the synthesis of 4,5,6,7-tetrahydroindazoles. The study of the reaction of Vilsmeier-Haack reagent with hydrazones derived from cyclic keto compounds having active methylene has been considered the interested topic of investigation. In the present study, ethyl cyclohexanone-4-carboxylate was treated with one equivalent of various hydrazines for two hours and the resulted hydrazones were further treated with an OPC-VH reagent (Vilsmeier-Haack reagent isolated from phthaloyl dichloride and N,Ndimethylformamide) afforded 4,5,6,7-tetrahydroindazoles in excellent yields. The synthesized compounds 4a-f and 5a-f were screened for their antioxidant activities using the DPPH radical scavenging assay. The target compounds were synthesized regioselectively using 4+1 approach in excellent yields. A number of experiments using both conventional heating as well as microwave irradiation methods were tried and on comparison, microwave irradiation method was found excellent in terms of easy work up, high chemical yields, shortened reaction times, clean and, no by-products formation. Some of the synthesized compounds showed significant antioxidant activity. The microwave assisted synthesis of 4,5,6,7-tetrahydroindazoles from ethyl cyclohexanone-4-carboxylate has been reported under mild conditions in excellent yield. Easy work up, high chemical yield, shortened reaction times, clean and no by-products formation are the major advantages of this protocol. These advantages may make this method useful for chemists who are interested in developing novel 4,5,6,7-tetrahydroindazole based drugs.


2019 ◽  
Vol 16 (2) ◽  
pp. 117-121 ◽  
Author(s):  
Peipei Han ◽  
Wenhua Zhou ◽  
Mingxia Chen ◽  
Qiuan Wang

A series of eight polymethoxychalcone Mannich base derivatives 2a-2h was synthesized via the microwave-assisted Mannich reaction of natural product 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1) with various secondary amines and formaldehyde. Compared to conventional heating method (80°C), the microwave-assisted method (700W, 65°C) is efficient with short reaction time (0.5-1 h) and good yields (74-88%). The antiproliferative activities of eight Mannich base derivatives were evaluated in vitro on a panel of three human cancer cell lines (Hela, HCC1954 and SK-OV-3) by CCK-8 assay. The results showed that all of the Mannich base derivatives exhibited potential antiproliferative activities on tested cancer cell lines with the IC50 values of 9.13-48.51 µM. Some active compounds exhibited more activity as compared to positive control cis-Platin. Among them, compound 2b revealed to have the strongest antiproliferative activity against all the three cancer cell lines with IC50 values ranging from 9.13 to 11.24 µM.


2020 ◽  
Vol 7 (3) ◽  
pp. 183-195
Author(s):  
Musa Özil ◽  
Emre Menteşe

Background: Benzoxazole, containing a 1,3-oxazole system fused with a benzene ring, has a profound effect on medicinal chemistry research owing to its important pharmacological activities. On the other hand, the benzoxazole derivative has exhibited important properties in material science. Especially in recent years, microwave-assisted synthesis is a technique that can be used to increase diversity and quick research in modern chemistry. The utilization of microwave irradiation is beneficial for the synthesis of benzoxazole in recent years. In this focused review, we provide a metaanalysis of studies on benzoxazole in different reaction conditions, catalysts, and starting materials by microwave technique so far, which is different from conventional heating. Methods: Synthesis of different kind of benzoxazole derivatives have been carried out by microwave irradiation. The most used method to obtain benzoxazoles is the condensation of 2-aminophenol or its derivatives with aldehydes, carboxylic acids, nitriles, isocyanates, and aliphatic amines. Results: Benzoxazole system and its derivatives have exhibited a broad range of pharmacological properties. Thus, many scientists have remarked on the importance of the synthesis of different benzoxazole derivatives. Conventional heating is a relatively inefficient and slow method to convey energy in orientation to the reaction medium. However, the microwave-assisted heating technique is a more effective interior heating by straight coupling of microwave energy with the molecules. Conclusion: In this review, different studies were presented on the recent details accessible in the microwave- assisted techniques on the synthesis of the benzoxazole ring. It presents all examples of such compounds that have been reported from 1996 to the present. Benzoxazoles showed an extensive class of chemical substances not only in pharmaceutical chemistry but also in dyestuff, polymer industries, agrochemical, and optical brighteners. Thus the development of fast and efficient achievement of benzoxazoles with a diversity of substituents in high yield is getting more noteworthy. As shown in this review, microwave-assisted synthesis of benzoxazoles is a very effective and useful technique.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2882
Author(s):  
José Miranda de Carvalho ◽  
Cássio Cardoso Santos Pedroso ◽  
Matheus Salgado de Nichile Saula ◽  
Maria Claudia França Cunha Felinto ◽  
Hermi Felinto de Brito

Luminescent inorganic materials are used in several technological applications such as light-emitting displays, white LEDs for illumination, bioimaging, and photodynamic therapy. Usually, inorganic phosphors (e.g., complex oxides, silicates) need high temperatures and, in some cases, specific atmospheres to be formed or to obtain a homogeneous composition. Low ionic diffusion and high melting points of the precursors lead to long processing times in these solid-state syntheses with a cost in energy consumption when conventional heating methods are applied. Microwave-assisted synthesis relies on selective, volumetric heating attributed to the electromagnetic radiation interaction with the matter. The microwave heating allows for rapid heating rates and small temperature gradients yielding homogeneous, well-formed materials swiftly. Luminescent inorganic materials can benefit significantly from the microwave-assisted synthesis for high homogeneity, diverse morphology, and rapid screening of different compositions. The rapid screening allows for fast material investigation, whereas the benefits of enhanced homogeneity include improvement in the optical properties such as quantum yields and storage capacity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guozhen Zhao ◽  
Jianhua Liu ◽  
Lei Xu ◽  
Shenghui Guo

Abstract The effects of the conventional heating method and the microwave heating method on polyacrylonitrile-based fibres in the temperature range of 180–280 °C were investigated. Fourier transform infrared spectroscopy, X-ray wide-angle scattering, Raman spectroscopy, energy-dispersive spectrometer, scanning electron microscopy and bulk density were used to characterise the properties of the samples. Results show that the microwave heating method can shorten the pre-oxidation time, reduce pre-oxidation temperature and reduce the number of surface defects. The pre-oxidised fibres obtained by the microwave heating method exhibit not only good crystallite size but also a smooth surface. Atomic morphology and molecular arrangement are orderly inside the fibre. The FT-IR spectrum shows that the oxidation reaction occurs at 220 °C, and the CI value of PAN fibers stabilised by microwave heating is the larger than the fibers stabilised by conventional heating. XRD analysis shows that fibers stabilised by microwave heating have low stack domains. The SEM and Raman spectra indicate that hydrogen peroxide can improve the surface finish of the fibers and reduce defects. Microwave heating can reduce the pre-oxidation temperature by about 20 °C and shorten the heating time. The economic benefits of using this method are significantly improved.


Sign in / Sign up

Export Citation Format

Share Document