scholarly journals Solid-State Fermentation in Brewer’s Spent Grains by Fusarium fujikuroi for Gibberellic Acid Production

2021 ◽  
Vol 11 (5) ◽  
pp. 13042-13052

The search for new production methodologies of gibberellic acid (GA3), such as solid-state fermentation (SSF), and the use of agro-industrial waste are important to lower production costs. Therefore, the aim of this study was GA3 production by Fusarium fujikuroi on SSF mode using brewer’s spent grains (BSG). BSG presents in its composition components that are known to be excellent inducers of metabolite production, showing, this way, its potential to be used as the substrate in biotechnological processes. Optimization of GA3 production was carried out using a 22 central composite design, considering the effects of moisture content, temperature, and fermentation time. The highest mycelial growth and GA3 production (0.82 g.Kg-1) was obtained in the condition of 80% moisture content, 28 °C in 96 hours of fermentation. These results suggest that the SSF using BSG as the medium for the growth of F. fujikuroi is a viable way to GA3 produce.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Faseleh Jahromi ◽  
Juan Boo Liang ◽  
Yin Wan Ho ◽  
Rosfarizan Mohamad ◽  
Yong Meng Goh ◽  
...  

Ability of two strains ofAspergillus terreus(ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained usingA. terreusATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM forA. terreusATCC 20542 andA. terreusATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P<0.01) and inoculums size and pH had no significant effect on lovastatin production (P>0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM forA. terreusATCC 20542 and ATCC 74135, respectively, using RS as substrate.


2017 ◽  
Vol 1 (1) ◽  
pp. 64-71
Author(s):  
Zuriana Sidi Ahmad ◽  
Mimi Sakinah Abdul Munaim

Malaysia is the largest country that has produced many types of waste. One of it is Meranti wood sawdust. These wastes result in a significant environmental problem if not dispose it in the proper manner. The main objective of this article is to produce the high yield of sorbitol by solid state fermentation (SSF) process from pretreated Meranti wood sawdust using bacterium Lactobacillus plantarum (BAA 793; NCIMB 8826). One factorat a time (OFAT) was studied for further process using solid state fermentation (SSF) process and investigated the effect of relevant parameters (fermentation time, range: 2 hours to 14 hours, moisture content, range: 40% to 90%, temperature, range: 25 oC to 45 oC) to the solid-state fermentation (SSF) process in producing high yield of sorbitol. The highest product yield was obtained at 50% moisture content, at 10 hours of fermentation time and 35 oC of incubation temperature where the concentration of sorbitol was 25.68 g/L respectively. This study also showed that the solid state fermentation (SSF) process will produce the high yield of sorbitol production compared to the submerged fermentation and could serve as a-low cost substrate for bioproducts production especially sorbitol


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wei Gao ◽  
Zhiqiang Lei ◽  
Lope G Tabil ◽  
Rongfei Zhao

Pelleting can increase the efficiency of handling and transportation of biomass. Pretreatment obtains lignin fragments by disrupting the lignocellulosic structure of biomass and ensures the high-quality compressed pellets. In this study, solid-state fermentation (SSF) is used as a biological method to improve the quality of pellets of oat straw. SSF of oat straw using Trametes versicolor 52J (TV52J) and Phanerochaete chrysosporium (PC) was conducted. Response surface methodology (RSM) was employed by using a four-factor, three-level Box–Behnken design with fermentation time (days), moisture content (%), particle size (mm), and fermentation temperature (°C) as independent parameters. Pellet density, dimensional stability, and tensile strength were the response variables. The optimization options of fermentation time (33.96 and 35 days), moisture content (70%), particle size (150 and 50 mm), and fermentation temperature (22°C) of oat straw pretreated with these two fungal strains were obtained. The microscopic structural changes of oat straw caused by biological pretreatment were investigated by scanning electron microscopy (SEM). Observation results of SEM showed that the connection between single fibers became relatively loose, and this was beneficial to improve the physical quality of the pellets.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Aline Machado de Castro ◽  
Daniele Fernandes Carvalho ◽  
Denise Maria Guimarães Freire ◽  
Leda dos Reis Castilho

Amylases are one of the most important industrial enzymes produced worldwide, with their major application being in ethanol manufacturing. This work investigated the production of amylases by solid-state fermentation of babassu cake, using the filamentous fungus Aspergillus awamori IOC-3914. Lab-scale experiments were carried out to generate input data for simulations of an industrial plant for amylase production. Additionally to the target enzymes, other hydrolases (cellulases, xylanases, and proteases) were also produced, enriching the final product. The most suitable fermentation time was 144 hours, when exoamylase and endoamylase activities of 40.5 and 42.7 U g−1 were achieved, respectively. A first evaluation showed a large impact of the inoculum propagation medium on production costs. Therefore, five propagation media were compared, and PDA medium presented the best cost-benefit ratio. The credits obtained from sales of fermented cake as a coproduct enabled a significant decrease in the production cost of the enzyme product, down to 10.40 USD kg−1.


2020 ◽  
Vol 8 (2) ◽  
pp. 22-29
Author(s):  
Ly Thi Minh Hien ◽  
Dong Thi Anh Dao

Carotenoid compounds are popular natural antioxidants which are commonly isolated from the plants. Recently, there have been many researches on carotenoid biosynthesis towards low cost products. In this study, Rhodotorula sp. was grown on an agricultural byproduct (corncobs) as a matrix in solid-state fermentation. Essential nutrients were added with different concentrations to optimize condition for the carotenoid biosynthesis. Effects of other environmental factors such as moisture content and fermentation time on the yield were also characterized. The optimal nutrient composition for the yeast’s growth and carotenoid biosynthesis is a compound of 500μg nitrogen and 16mg carbon in 100g matrix. Additionally, the moisture content of 80% is the best for producing carotenoid by this yeast strain. The fermentation time for the highest carotenoid yield is observed after 8 days.


2009 ◽  
Vol 52 (spe) ◽  
pp. 181-188 ◽  
Author(s):  
Cristine Rodrigues ◽  
Luciana Porto de Souza Vandenberghe ◽  
Juliana Teodoro ◽  
Juliana Fraron Oss ◽  
Ashok Pandey ◽  
...  

Gibberellic acid (GA3) is an important hormone, which controls plant's growth and development. Solid State Fermentation (SSF) allows the use of agro-industrial residues reducing the production costs. The screening of strains (four of Gibberella fujikuoroi and one of Fusarium moniliforme) and substrates (citric pulp, soy bran, sugarcane bagasse, soy husk, cassava bagasse and coffee husk) and inoculum preparation study were conducted in order to evaluate the best conditions to produce GA3 by SSF. Fermentation assays were carried out in erlenmeyers flasks at 29°C, with initial moisture of 75-80%. Different medium for inoculum production were tested in relation to cells viability and GA3 production by SSF. F. moniliforme LPB 03 and citric pulp were chosen for GA3 production. The best medium for inoculum production was citric pulp extract supplemented with sucrose. GA3 production by SSF reached 5.9 g /kg of dry CP after 3 days of fermentation.


2011 ◽  
Vol 29 (No. 5) ◽  
pp. 557-567 ◽  
Author(s):  
X.-J. Dai ◽  
M.-Q. Liu ◽  
H.-X. Jin ◽  
M.-Y. Jing

The production of xylanase (XylA) by Aspergillus niger JL-15 in solid-state fermentation (SSF) on orange peel was optimised by the response surface methodology (RSM). The results revealed that four factors had significant effects on the XylA production (P &lt; 0.05), that is the concentrations of the added glycerin and ammonium sulfate, the moisture content, and fermentation time. Exploying orange peel as the solid substrate, maximum xylanase activity (917.7&nbsp;U/g dry fermentation product) was obtained at 4.2% glycerin, 3.1% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 61% moisture content, and 73.4-h fermentation, this activity being close to the predicted one and 3.2 times higher than that of the basic medium (218.5&nbsp;U/g). Optimum temperature and pH for XylA activity were 55&deg;C and pH 5.0, respectively. SDS-PAGE analysis showed that the relative molecular mass of XylA was about 30.0 kDa. XylA exhibited K<sub>m</sub> and V<sub>max </sub>values of 9.24 mg/ml and 54.05&nbsp;&mu;mol/min/ml, respectively. XylA liberated mainly xylotriose from birchwood xylan and wheat bran, respectively. XylA was an endo-acting xylanase with transglycosylation activity, with the ability to hydrolyse, xylobiose, xylotriose, xylotetraose, xylopentaose, and xylohexaose.


2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Cornelius Damar Hanung ◽  
Ronald Osmond ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

White rot fungi of Marasmius sp. is a fungus which produce laccase in high activity. Laccase is one of the ligninolityc enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production. Laccase was produced in flask by batch process using Solid State Fermentation (SSF). The optimisation was conducted by statistically of full factorial design. The particle size, moisture content, and Cu concentration were investigated in this study. Rice straw was used as solid substrate and the glycerol was used as the carbon sources in modified Kirk medium. The results showed that particle size of rice straw did not affect significantly to the enzyme activity. The highest laccase activity of 4.45 IU/g dry weight was obtained at the moisture content of 61% and Cu concentration of 0.1 mM.Keywords: laccase, Marasmius sp., optimisation, rice straw, solid state fermentation ABSTRAKJamur pelapuk putih, Marasmius sp. merupakan jamur yang menghasilkan enzim lakase dengan aktivitas tinggi. Lakase merupakan enzim ligninolitik yang dapat mendegradasi lignin. Kemampuan ini dapat digunakan untuk proses pengolahan awal bahan lignoselulosa pada pembuatan bioetanol. Produksi lakase dilakukan dalam labu dengan modus batch menggunakan fermentasi kultur padat. Optimisasi produksi enzim lakase dengan metode fermentasi padat dilakukan dengan  rancangan percobaan faktorial penuh. Pengaruh ukuran partikel, kelembapan, dan konsentrasi Cu diuji dengan medium penyangga jerami dengan menambahkan gliserol dalam medium Kirk termodifikasi sebagai sumber karbon. Penelitian ini menunjukkan bahwa ukuran jerami tidak berpengaruh signifikan terhadap aktivitas enzim. Aktivitas enzim lakase maksimum terjadi pada saat kelembapan 61% dan konsentrasi Cu 0,1 mM dengan aktivitas enzim lakase/berat kering tertinggi mencapai 4,45 IU/g.Kata kunci: lakase, Marasmius sp., optimisasi, jerami, fermentasi kultur padat


2018 ◽  
Vol 12 (1) ◽  
pp. 189-203 ◽  
Author(s):  
Georgi Dobrev ◽  
Hristina Strinska ◽  
Anelia Hambarliiska ◽  
Boriana Zhekova ◽  
Valentina Dobreva

Background: Rhizopus arrhizus is a potential microorganism for lipase production. Solid-state fermentation is used for microbial biosynthesis of enzymes, due to advantages, such as high productivity, utilization of abundant and low-cost raw materials, and production of enzymes with different catalytic properties. Objective: The objective of the research is optimization of the conditions for lipase production in solid-state fermentation by Rhizopus arrhizus in a nutrient medium, containing agroindustrial wastes. Method: Biosynthesis of lipase in solid-state fermentation by Rhizopus arrhizus was investigated. The effect of different solid substrates, additional carbon and nitrogen source, particles size and moisture content of the medium on enzyme production was studied. Response surface methodology was applied for determination of the optimal values of moisture content and tryptone concentration. A procedure for efficient lipase extraction from the fermented solids was developed. Results: Highest lipase activity was achieved when wheat bran was used as a solid substrate. The addition of 1% (w/w) glucose and 5% (w/w) tryptone to the solid medium significantly increased lipase activity. The structure of the solid medium including particles size and moisture content significantly influenced lipase production. A mathematical model for the effect of moisture content and tryptone concentration on lipase activity was developed. Highest enzyme activity was achieved at 66% moisture and 5% (w/w) tryptone. The addition of the non-ionic surfactant Disponyl NP 3070 in the eluent for enzyme extraction from the fermented solids increased lipase activity about three folds. Conclusion: After optimization of the solid-state fermentation the achieved 1021.80 U/g lipase activity from Rhizopus arrhizus was higher and comparable with the activity of lipases, produced by other fungal strains. The optimization of the conditions and the use of low cost components in solid-state fermentation makes the process economicaly effective for production of lipase from the investigated strain Rhizopus arrhizus.


Sign in / Sign up

Export Citation Format

Share Document