scholarly journals Development and Performance Analysis of a Low-Cost Hydrogen Generation System Using Locally Available Materials

2020 ◽  
Vol 68 (1) ◽  
pp. 49-56
Author(s):  
Gour Chand Mazumder ◽  
SM Nasif Shams ◽  
Md Habibur Rahman ◽  
Saiful Huque

In this paper, a low-cost water electrolyzer is developed and its performance study is presented. Locally found materials are used to develop the electrolyzer. The electrolyzer has two cells connected in parallel and bipolar electrode configuration. In common, different cells are connected in series but for this electrolyzer parallel connection has been tested. A very thin polymer, Nylon-140 has been used as separator membranes for this electrolyzer. In separator membrane assembly, the designed geometry creates two separate gas channels internally which enables the direct collection of hydrogen and oxygen gas from the designated outlet port of the electrolyzer. The geometry excludes the need of external tubing into each cell-compartments to collect hydrogen and oxygen separately. The developed electrolyzer is found to be 42% efficient with its highest production rate of 227.27 mL/min. The purity of hydrogen is found to be more than 92% and justified with the burn test. The cost is 20 times less than the commercial electrolyzers. The development method and scheme can be helpful to popularize the small scale use of hydrogen in Bangladesh for various renewable energy applications. Dhaka Univ. J. Sci. 68(1): 49-56, 2020 (January)

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michal Kulak ◽  
Michal Lipian ◽  
Karol Zawadzki

Purpose This paper aims to discuss the results of the performance study of wind turbine blades equipped with winglets. An investigation focusses on small wind turbines (SWTs), where the winglets are recalled as one of the most promising concepts in terms of turbine efficiency increase. Design/methodology/approach To investigate a contribution of winglets to SWT aerodynamic efficiency, a wind tunnel experiment was performed at Lodz University of Technology. In parallel, computational fluid dynamics (CFD) simulations campaign was conducted with the ANSYS CFX software to investigate appearing flow structures in greater detail. Findings The research indicates the potential behind the application of winglets in low Reynolds flow conditions, while the CFD study enables the identification of crucial regions influencing the flow structure in the most significant degree. Research limitations/implications As the global effect on a whole rotor is a result of a small-scale geometrical feature, it is important to localise unveiled phenomena and the mechanisms behind their generation. Practical implications Even the slightest efficiency improvement in a distributed generation installation can promote such a solution amongst energy prosumers and increase their independence from limited natural resources. Originality/value The winglet-equipped blades of SWTs provide an opportunity to increase the device performance with relatively low cost and ease of implementation.


Author(s):  
Sreekanth Mandati ◽  
Prashant Misra ◽  
Divya Boosagulla ◽  
Tata Naransinga Rao ◽  
Bulusu V. Sarada

Abstract Electrodeposition is one of the leading non-vacuum techniques for the fabrication of CuInSe2 (CIS)-based solar cells. In the present work, pulse electrodeposition, an advanced technique, is utilized effectively for CIS absorber preparation devoid of any additives/complexing agents. An economic pulse electrodeposition is employed for the deposition of Cu/In stack followed by selenization to fabricate CIS absorbers on flexible and glass substrates. The approach uses a two-electrode system suitable for large area deposition and utilizes the fundamentals of pulse electrodeposition with appropriate optimization of parameters to obtain smooth Cu/In precursors. The selenized CIS absorbers are of 1 µm thick while possessing copper-poor composition (Cu/In ≈ 0.9) and tetragonal chalcopyrite phase. The fabricated devices have exhibited a power conversion efficiency of 5.2%. The technique can be further improved to obtain low-cost CIS solar cells which are suitable for various small-scale energy applications.


10.6036/9889 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 281-284
Author(s):  
PABLO LUQUE RODRÍGUEZ ◽  
DANIEL ÁLVAREZ MÁNTARAS ◽  
JORGE ROCES GARCIA ◽  
ALVARO MARADONA TUERO ◽  
LUCIANO SANCHEZ RAMOS

This work shows the electrification of a vehicle for the European Mountain Climbing Championship, with a design and construction that allows to maintain the performance of the designs with thermal propellant without increasing the cost. It is based on an existing space-frame vehicle and a methodology based on a multi-target optimization is implemented to define the parameters characteristic of the powertrain. The design is completed with the choice of commercial elements of cost contained to propose a final design competitive in price and performance. Keywords: Electric vehicle, motor vehicle, powertrain design, low cost, electric batteries


Author(s):  
R. Blaskow ◽  
E. Schwalbe

Abstract. For small-scale monitoring of small water bodies, conventional methods such as GNSS or total station measurements are used. The data acquisition is usually carried out in profile form supplemented with extra measurements of break edges, slope edges or bank courses. However, these methods can be used efficiently only on small sections and with low temporal resolution. At the same time, as the length of rivers or creeks to be monitored increases, the cost-effectiveness of the above methods decreases. Further limitations such as very small sections that are difficult to access and also sections that are sometimes heavily overgrown also prevent the use of large measuring platforms. By contrast, with use of a hand-held compact multi-sensor platform it is possible to survey several hundred kilometres of the smallest rivers and creeks. This publication demonstrates the use of such a platform to record micro-watersheds. For this purpose, the Creek4D project, the measurement principle and the sensor technology used are shown. In addition, first measurement data and the calibration strategy are shown.


2019 ◽  
Vol 27 (1) ◽  
pp. 79-88 ◽  
Author(s):  
A. V. Ivanchenko ◽  
A. S. Tonkoshkur ◽  
S. V. Mazurik

The problems of reducing the cost of ensuring the safe operation of solar cells by using low-cost elements of solid-state electronics to protect against overvoltage photovoltaic cells of solar arrays are considered. The results of experimental studies of the use of a varistor-posistor structure based on a metal oxide varistor and PPTC fuses of the PolySwitch type being in thermal contact to prevent overvoltages in series connections of photovoltaic cells are presented. General schemes for using the considered solid-state structure to limit the indicated constant overvoltages are given and justified. The requirements to the parameters of this structure are determined and experimentally verified. It is shown that such a device makes it possible to limit the long-term constant overvoltages that occur in photovoltaic arrays at the level of photovoltaic cells in the case of their malfunction or shadowing, which can lead to fire hazard and other “abnormal” situations during the operation of solar electric energy sources.


Author(s):  
Sudhanshu S. Kamat ◽  
Dilip D. Sarode

Solar desalination technologies are becoming popular among the scientific community for the production of fresh water from the brackish water. Membrane technologies are expensive to be implemented on small scale. Solar stills have simple working principle and there is low cost associated with it. Varied configurations and modifications have been implemented to improve the performance of solar stills. Thermodynamic analysis has also been done for the same. However, it is important to also optimize various combinations of the operating parameters, including the cost-benefit analysis associated with it. This paper focuses on the review of the effects of various geometric and operating parameters, and also optimizing the thermodynamics to improve the performance of solar still.


Author(s):  
David Arruda ◽  
David Browne ◽  
Chris Thongkham ◽  
Mansour Zenouzi

One of the major road blocks in the transition from the current oil economy to the future hydrogen fuel economy is the availability of low cost hydrogen fuel for the average consumer. Currently, the price per kilogram of hydrogen fuel is higher than the cost of an equivalent measure of gasoline and its availability is limited to large metropolitan areas. Both of these factors prevent hydrogen from being an attractive alternative to gasoline for most consumers. The goal of this project, in a senior thermal design course, is to design and construct a low-cost hydrogen generation system for residential hydrogen fuel production and storage. The system will be powered by renewable sources of energy; namely a micro-scale wind turbine and a solar panel. The power generated will be used to power a small-scale PEM electrolyzer to produce hydrogen gas that will then be stored at low pressure in a safe, metal hydride storage tank. This relatively low cost system will provide the average consumer with the ability to safely produce hydrogen fuel for use in residential fuel cells or fuel cell-powered vehicles, making hydrogen fuel an attractive alternative to fossil fuels.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 216 ◽  
Author(s):  
Moksadur Rahman ◽  
Valentina Zaccaria ◽  
Xin Zhao ◽  
Konstantinos Kyprianidis

The market for the small-scale micro gas turbine is expected to grow rapidly in the coming years. Especially, utilization of commercial off-the-shelf components is rapidly reducing the cost of ownership and maintenance, which is paving the way for vast adoption of such units. However, to meet the high-reliability requirements of power generators, there is an acute need of a real-time monitoring system that will be able to detect faults and performance degradation, and thus allow preventive maintenance of these units to decrease downtime. In this paper, a micro gas turbine based combined heat and power system is modelled and used for development of physics-based diagnostic approaches. Different diagnostic schemes for performance monitoring of micro gas turbines are investigated.


2013 ◽  
Vol 336-338 ◽  
pp. 1882-1886
Author(s):  
Tian Fu ◽  
Zhen Wang ◽  
Pan Deng Yang

With the gradual application of RFID technology, the problems of privacy security arouse people's great attention. To address the problems of the existing RFID authentication protocol, such as the weakness on security and privacy, the high cost and the un-stabilizing systems performance, this paper puts forward a kind effective protection of privacy and low cost RFID security authentication protocol, analyses the security and performance of this protocol. This protocol can not only effectively solve the problems of replay attacks, location privacy attack and data synchronization, but also greatly use the Reader computing resources to reduce the cost of system construction, so it is appropriate for the application of RFID system.


Sign in / Sign up

Export Citation Format

Share Document