scholarly journals Production of Microalgal Biomass at Different Growth Phases to Use as Biofuel Feedstock

2021 ◽  
Vol 47 (2) ◽  
pp. 161-171
Author(s):  
NJ Tarin ◽  
NM Ali ◽  
AS Chamon ◽  
MN Mondol ◽  
MM Rahman ◽  
...  

The growth of microalgae under optimized conditions was determined for assessing their growth rate and biomass production. In this study, the growth of both green algae (Chlamydomonas noctigama and Chlorella vulgaris) and cyanobacteria (Anabaena variabilis and Nostoc spongiaeforme) was measured as optical density. Chlamydomonas noctigama and Chlorella vulgaris showed the doubling time of 9.5 and 8.0 hours, respectively, whereas Anabaena variabilis and Nostoc spongiaeforme showed the doubling time of 14.8 and 16.6 hours, respectively. All the species exhibited the highest growth in terms of biomass at the phase in between stationary and death phases. J. Asiat. Soc. Bangladesh, Sci. 47(2): 161-171, December 2021

Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Maria N. Metsoviti ◽  
George Papapolymerou ◽  
Ioannis T. Karapanagiotidis ◽  
Nikolaos Katsoulas

In this research, the effect of solar irradiance on Chlorella vulgaris cultivated in open bioreactors under greenhouse conditions was investigated, as well as of ratio of light intensity in the 420–520 nm range to light in the 580–680 nm range (I420–520/I580–680) and of artificial irradiation provided by red and white LED lamps in a closed flat plate laboratory bioreactor on the growth rate and composition. The increase in solar irradiance led to faster growth rates (μexp) of C. vulgaris under both environmental conditions studied in the greenhouse (in June up to 0.33 d−1 and in September up to 0.29 d−1) and higher lipid content in microalgal biomass (in June up to 25.6% and in September up to 24.7%). In the experiments conducted in the closed bioreactor, as the ratio I420–520/I580–680 increased, the specific growth rate and the biomass, protein and lipid productivities increased as well. Additionally, the increase in light intensity with red and white LED lamps resulted in faster growth rates (the μexp increased up to 0.36 d−1) and higher lipid content (up to 22.2%), while the protein, fiber, ash and moisture content remained relatively constant. Overall, the trend in biomass, lipid, and protein productivities as a function of light intensity was similar in the two systems (greenhouse and bioreactor).


2016 ◽  
Vol 42 (2) ◽  
pp. 191-200
Author(s):  
NJ Tarin ◽  
NM Ali ◽  
AS Chamon ◽  
MN Mondol ◽  
MM Rahman ◽  
...  

Isolation and characterization of Chlorella vulgaris (green alga) and Anabaena variabilis (cyanobacterium) were made from natural and artificial water bodies of Dhaka University and Khulna, Bangladesh from March through December 2014 using modified Chu-10D medium to determine their potential as feedstock for biofuel production. Optimum growth measured as total chlorophyll and optical density under varying physical and chemical environments was determined. The optimum growth for C. vulgaris was obtained at pH 6.5 under light intensity of 110 μE m-2 s-1 and one and a half times the concentration of the Chu-10D. Compared to this, the optimum growth for A. variabilis was obtained at 7.0 pH, 90 μE m-2 s-1 light intensity and normal Chu 10D. Both organisms were grown at 25o C temperature. Aeration of medium showed a significant positive growth for both the isolates. Supplementation of medium with vitamin B1, B6, B7 and B12 would yield higher biomass of C. vulgaris as biofuel feedstock. Vitamins were not required for growing A. variabilis. Asiat. Soc. Bangladesh, Sci. 42(2): 191-200, December 2016


2016 ◽  
Vol 10 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Esmat Ebrahimi ◽  
Alireza Salarzadeh

Salinity and temperature are two of the major factors controlling the growth rate of microalgae. In this study, the effect of salinity and temperature on the growth of marine microalgae; Chlorella capsulata and Skeletonema costatum were investigated to optimize the microalgal biomass production. These species were cultured at different salinities (20, 25 and 30 ‰) and temperatures (20, 25 and 30°C). Skeletonema costatum and Chlorella capsulata had significantly higher (p<0.05) growth rate when cultured at salinities of 30 and 25 ‰, respectively. In terms of temperature, the highest (p<0.05) growth rate was observed in Skeletonema costatum and Chlorella capsulata cultivated at temperatures of 30 and 25°C, respectively. This study indicated that Skeletonema costatum was suitable to marine condition, whereas Chlorella capsulata showed optimum growth at lower salinity and temperature. In addition, can be concluded, Chlorella capsulata and Skeletonema costatum can be considered as suitable species for large outdoor micro algal cultivation.International Journal of Life Sciences 10 (1) : 2016; 40-44


2016 ◽  
Vol 18 (1) ◽  
pp. 15 ◽  
Author(s):  
Muhammad Fakhri ◽  
Nasrullah B. Arifin

Monitoring of microalgae growth (Tetraselmis sp. and Nannochloropsis sp.) is one of the essential factors in fish and shrimp cultures. The purpose of this study was to determine the growth characteristics of Tetraselmis sp. and Nannochloropsis sp. by measuring optical density using spectrophotometry method. Absorbance of 600 nm was used for both species. The results showed that the maximum growth was achieved at day 6 for both microalgae with OD value of 1.734±0.013 and 1.329±0,002 for Tetraselmis sp. and Nannochloropsis sp., respectively. Tetraselmis sp. had a maximum growth rate of 0.74/day and doubling time of 22.43 hours while Nannochloropsis sp. had a maximum growth rate of 0.86/day and doubling time of 19.25 hours. This study shows that absorbance of 600 nm is suitable for determine the growth of green microalgae and spectrophotometry method can be used efficiently to monitor microalgal growth. 


Author(s):  
Sukarni Sukarni ◽  
Sumarli Sumarli ◽  
Imam Muda Nauri ◽  
Purnami Purnami ◽  
Akhmad Al Mufid ◽  
...  

Among the renewable biomass fuel alternatives, microalgae are the most important future choices owing to its fast growth rate and great capability for CO2 fixation. There are various species in the world, in which each species has its characteristics. This work presents a prospect of marine microalgae Isochrysis galbana for renewable fuel feedstock regarding its biomass abundance, physicochemical properties, and thermal characteristic. The seawater medium in the Erlenmeyer flask was used for the algal culturing. The biomass abundance, in term of specific growth rate and doubling time, was assessed by calculating the culture medium cells number with a hemocytometer and optical microscope. Harvesting was done by precipitating biomass with caustic soda, subsequently filtering, and washing it with distilled water. The biomass sediment had been sun-dried for three days, and then dried biomass was crushed by using the mortar to be a powder. The proximate analysis was arranged by conducting an experiment in according to the test method of ASTM D 3173-11, ASTM D 3175-11, ASTM D 3172-13 and ASTM D 3174-12 for specifying the content of moisture, volatile matter, fixed carbon, and ash of the sample, respectively. The heating value was estimated by using adiabatic bomb calorimeter. The chemical composition of biomass was determined by Energy-dispersive X-ray (EDX) spectrometry. The biomass cellular macromolecular compounds were also evaluated by Fourier transform infrared (FTIR) spectroscopy and compared with its residue. Through eight days observation, it was noticeable that Isochrysis galbana has a specific growth rate of 0.18 d-1 and a doubling time of 3.85 d. The respective moisture, volatile matter, fixed carbon, and ash content were 12.98, 40.10, 7.47, and 39.45 (%, air-dried basis). The energy content algal biomass was 16.22 MJ kg-1. This current investigation encourages that Isochrysis galbana can be viable as one of a future sustainable solid biofuel feedstock.


Author(s):  
Sukarni Sukarni ◽  
Sumarli Sumarli ◽  
Imam Muda Nauri ◽  
Purnami Purnami ◽  
Akhmad Al Mufid ◽  
...  

Among the renewable biomass fuel alternatives, microalgae are the most important future choices owing to its fast growth rate and great capability for CO2 fixation. There are various species in the world, in which each species has its characteristics. This work presents a prospect of marine microalgae Isochrysis galbana for renewable fuel feedstock regarding its biomass abundance, physicochemical properties, and thermal characteristic. The seawater medium in the Erlenmeyer flask was used for the algal culturing. The biomass abundance, in term of specific growth rate and doubling time, was assessed by calculating the culture medium cells number with a hemocytometer and optical microscope. Harvesting was done by precipitating biomass with caustic soda, subsequently filtering, and washing it with distilled water. The biomass sediment had been sun-dried for three days, and then dried biomass was crushed by using the mortar to be a powder. The proximate analysis was arranged by conducting an experiment in according to the test method of ASTM D 3173-11, ASTM D 3175-11, ASTM D 3172-13 and ASTM D 3174-12 for specifying the content of moisture, volatile matter, fixed carbon, and ash of the sample, respectively. The heating value was estimated by using adiabatic bomb calorimeter. The chemical composition of biomass was determined by Energy-dispersive X-ray (EDX) spectrometry. The biomass cellular macromolecular compounds were also evaluated by Fourier transform infrared (FTIR) spectroscopy and compared with its residue. Through eight days observation, it was noticeable that Isochrysis galbana has a specific growth rate of 0.18 d-1 and a doubling time of 3.85 d. The respective moisture, volatile matter, fixed carbon, and ash content were 12.98, 40.10, 7.47, and 39.45 (%, air-dried basis). The energy content algal biomass was 16.22 MJ kg-1. This current investigation encourages that Isochrysis galbana can be viable as one of a future sustainable solid biofuel feedstock.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1644 ◽  
Author(s):  
Guyue Zou ◽  
Yuhuan Liu ◽  
Qi Zhang ◽  
Ting Zhou ◽  
Shuyu Xiang ◽  
...  

Fresh pig urine is unsuitable for microalgae cultivation due to its high concentrations of NH4+-N, high pH and insufficient magnesium. In this study, fresh pig urine was pretreated by dilution, pH adjustment, and magnesium addition in order to polish wastewater and produce microalgae biomass. Chlorella vulgaris was cultured in an in-house-designed light-receiving-plate (LRP)-enhanced raceway pond to treat the pretreated pig urine in both batch and continuous mode under outdoor conditions. NH4+-N and TP in wastewater were detected, and the growth of C. vulgaris was evaluated by chlorophyll fluorescence activity as well as biomass production. Results indicated that an 8-fold dilution, pH adjusted to 6.0 and MgSO4·7H2O dosage of 0.1 mg·L−1 would be optimal for the pig urine pretreatment. C. vulgaris could stably accumulate biomass in the LRP-enhanced raceway pond when cultured by both BG11 medium and the pretreated pig urine. About 1.72 g·m−2·day−1 of microalgal biomass could be produced and 98.20% of NH4+-N and 68.48% of TP could be removed during batch treatment. Hydraulic retention time of 7-9d would be optimal for both efficient nutrient removal and microalgal biomass production during continuous treatment.


2010 ◽  
Vol 7 (2) ◽  
pp. 918-926
Author(s):  
Baghdad Science Journal

The study included studying some of the optimum environmental conditions(temperature ,light intensity ) on the production of several green algae Scendesmus quadricauda and Chlorella vulgaris in a selected culture and municipal wastewater . The study also included the recording of growth rate ,doubling time and removal of phosphate and nitrate , maximum rate was recorded to the growth with minimum in doubling time and maximum removal rate of nitrogen-nitrate and phosor- phosphate in each selected culture and municipal wastewater in each species of green algae at 25 C? and a light intensity 380 µ E / m2 / s.


2013 ◽  
Vol 85 (4) ◽  
pp. 1427-1438 ◽  
Author(s):  
MATHIAS A. CHIA ◽  
ANA T. LOMBARDI ◽  
MARIA DA GRACA G. MELAO

The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media). The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC), sterol esthers (SE), free fatty acids (FFA), aliphatic alcohols (ALC), acetone mobile polar lipids (AMPL) and phospholipids (PL) concentrations and yields were highest in the Chu medium. Triglyceride (TAG) and sterol (ST) concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.


Sign in / Sign up

Export Citation Format

Share Document