scholarly journals Investigation of the Physical and Chemical Characteristics of the Zeolites of the Kholinsky Deposit

2021 ◽  
Vol 10 (4) ◽  
pp. 65-71
Author(s):  
A. V. Bondarev ◽  
E. T. Zhilyakova ◽  
N. B. Demina ◽  
K. K. Razmakhnin

Introduction. The mineral resource base of Russia has effective sorption substances that meet pharmaceutical requirements. Promising mineral raw materials are Zeolites, which combine the properties of an adsorbent and a "molecular sieve" due to the porous structure. In addition to the enterosorption direction, natural Zeolites are a source of macro-and microelements, which determines their use as biologically active food additives.Aim. Study of the physical and chemical characteristics of the Zeolites of the Kholinsky deposit.Materials and methods. The zeolite mineral raw materials of the Kholinsky deposit were used as objects of research. Optical microscopy was performed using a Leica DM direct microscope (Microsystems, Germany). Energy dispersion analysis was performed using an electron scanning microscope JSM-5300 (Jeol Ltd, Japan). The sorption characteristics were studied using the ASAP 2400 device (Micromeritics, USA) according to the method. The construction of a virtual three-dimensional molecular model of the Zeolite was carried out using the program Java Applet Jmol.Results and discussion. The physicochemical properties of Zeolites are investigated. It is established that morphologically the particles of the zeolite phase have a size of 5-30 microns, they are evenly distributed over the entire area of the site and represent the first structural level. Particles of the zeolite phase with a size of 5-6 microns form the second structural level due to Clinoptilolite crystals, microcracks and microgeodes. Based on the energy-dispersion spectral analysis, an increased content of the elements K, Na was revealed, which indicates the alkaline composition of the cation exchange complex. The studied Zeolite samples have micropores (volume 0.0031 cm3/g), mesopores (volume 0.0675 cm3/g), and a specific surface area of 29.1840 m2/g. A virtual three-dimensional molecular model of the Zeolite of the Kholinsky deposit has been developed. According to the molecular model, the sorption characteristics of the Kholinsky deposit Zeolite were: specific surface area - 1096.31 m2/g (1916.34 m2/cm3), the average diameter of the spherical molecule for adsorption in the pores is 5.97 A.Conclusion. The analysis of the sorption characteristics of the Zeolite revealed the following features: the pores occupy half the volume of the entire Zeolite, which are available for the sorption of water and low-molecular substances. Each pore in three mutually perpendicular directions communicates with the neighboring ones through "windows". A system of intracrystalline pores and cavities is formed, in which the occlusion and adsorption of molecules of the appropriate size easily occurs.

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 902
Author(s):  
Feng Wu ◽  
Hui Li ◽  
Kang Yang

Coal-gasification slag (CGS) was subjected to mechanical grinding by three different methods. We studied the effects of mechanical activation on various physical and chemical characteristics of the CGS, including particle-size distribution, specific surface area, mineral composition, degree of crystallinity, particle morphology, chemical bonding, surface activity and binding energy, anionic-polymerization degree and hydration properties. The results show that there are different effects on CGS characteristics depending on the type of activation applied. Mechanical activation also can increase the specific surface area and the dissolution rates of activated SiO2 and Al2O3, and the major elements (O, Si, Al, Ca) in CGS, whereas the degree of crystallinity and of polymerization of [SiO4] and [AlO6] are reduced by mechanical activation. We also found that the effects of different mechanical-activation methods on the compressive strength and activity were similar and could accelerate the hydration process.


Author(s):  
Т.В. САВЕНКОВА ◽  
М.А. ТАЛЕЙСНИК ◽  
Н.А. ЩЕРБАКОВА ◽  
С.Ю. МИСТЕНЕВА ◽  
И.И. МИЗИНЧИКОВА

Описаны и теоретически обоснованы разработанные технологические приемы производства мучных кондитерских изделий при сохранении влаги на всех стадиях производства. В рамках исследования решали следующие задачи: увеличение удельной поверхности частиц дисперсной фазы эмульсии за счет моделирования рецептурного состава; дезагрегирование муки, повышение равномерности распределения дисперсионной среды (эмульсии) с образованием оболочек вокруг максимально возможного количества частиц муки различных фракций. Объектом для моделирования рецептурного состава было сахарное печенье. Установлено, что замена рецептурных компонентов с повышенной влажностью на сырье с высоким содержанием сухих веществ позволяет высвободить влагу и использовать новые виды сырья с повышенными нативными свойствами. Предложенные приемы подготовки сырьевых компонентов: снижение вязкости солодового экстракта, используемого для снижения количества сахара-песка, осмотическое набухание яичного порошка, пластикация жира со стабилизацией его структуры лецитином, инверсия сахарозы в условиях совмещения гидродинамического и акустического кавитационных воздействий при получении инвертного сиропа – обеспечивают благоприятные условия получения эмульсии с повышенной удельной поверхностью. Отличительной особенностью предлагаемой технологии является получение эмульсии в две стадии: приготовление суспензии без жира и собственно получение эмульсии. Раздельная подача сахара в два приема: 40–60% его рецептурного количества вносится на стадии приготовления суспензии, оставшаяся часть – при приготовлении эмульсии – и кавитационная обработка суспензии при температуре 36–38°С и частоте колебаний волновода 24 кГц позволяют повысить частичную концентрацию частиц сахара в 8–12 раз. При приготовлении эмульсии пластицированный жир и лецитин предварительно смешивают с оставшейся частью сахара-песка, а затем с суспензией. Дезагрегированную путем аэрации муку и эмульсию одновременно и параллельно подают в месильную машину для достижения их заданного соотношения до начала процесса тестообразования. Разработанный комплекс технологических приемов позволил создать технологический поток производства сахарного печенья с улучшенными показателями качества – намокаемостью до 230% (по классической технологии 180–200%), сниженной на 20% плотностью, повышенными пористостью и рассыпчатостью и сохраняющего до 92% влажности, что на 18% выше, чем в изделиях, полученных по классической технологии. The developed technological techniques for the production of flour confectionery products while maintaining moisture at all stages of production are described and theoretically justified. The following tasks were solved in the framework of the study: increasing the specific surface area of the particles of the dispersed phase of the emulsion by modeling the recipe composition; disaggregating flour, increasing the uniformity of the distribution of the dispersion medium (emulsion) with the formation of shells around the maximum possible number of flour particles of various fractions. The object for modeling the formulation composition was sugar cookies. It is established that the replacement of prescription components with high humidity with raw materials with a high content of dry substances allows you to release moisture and use new types of raw materials with increased native properties. The proposed methods of preparation of raw materials: reducing the viscosity of malt extract used to reduce the amount of granulated sugar, osmotic swelling of egg powder, fat plasticization with the stabilization of its structure with lecithin, sucrose inversion under conditions of combining hydrodynamic and acoustic cavitation effects in the production of invert syrup – provide favorable conditions for obtaining an emulsion with an increased specific surface area. The production of an emulsion in two stages is a distinctive feature of the proposed technology: the preparation of a suspension without fat and the actual production of the emulsion. Separate supply of sugar in two steps: 40–60% of its prescription amount is introduced at the stage of preparation of the suspension, the remaining part – during the preparation of the emulsion – and cavitation treatment of the suspension at a temperature of 36–38°С and the waveguide oscillation frequency of 24 kHz, it is possible to increase the partial concentration of sugar particles by 8–12 times. When preparing the emulsion, the plasticized fat and lecithin are pre-mixed with the remaining part of the granulated sugar, and then with the suspension. The aeration-disaggregated flour and emulsion are fed simultaneously and in parallel to the kneading machine to achieve their desired ratio before the dough-forming process begins. The developed complex of technological techniques allowed to create a technological flow for the production of sugar cookies with improved quality indicators – wetting up to 230% (according to the classical technology 180–200%), reduced density by 20%, increased porosity and friability, and preserving up to 92% humidity, which is 18% higher than in products obtained by the classical technology.


2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


Paliva ◽  
2020 ◽  
pp. 155-161
Author(s):  
Tomáš Hlinčík ◽  
Veronika Šnajdrová ◽  
Veronika Kyselová

Alumina is commonly used in industrial practice as a catalyst support and it is made from boehmite. Depending on the calcination temperature, this mineral is transformed into various crystalline modifications which have different physical and chemical properties. For this reason, the following parameters were determined at different calcination temperatures: length, width, material hardness, specific surface area and total pore volume. The results show that with increasing calcination temperature there have been significant changes which may be important when using the material as a catalyst support, e.g. in the preparation of catalysts or in the design of cat-alytic reactors. The specific surface area, which decreases in the temperature range 450–800 °C, is an important parameter for the preparation of catalysts, so it is appropriate to choose a temperature of 600 °C, when the specific surface area is above 200 m2·g-1. The effect of calcination temperature on the structural transitions of boehmite was also monitored. The results showed that γ-Al2O3 has the most suitable properties as a catalyst sup-port in the temperature range 450–800 °C.


2016 ◽  
Vol 18 (2) ◽  
pp. 141 ◽  
Author(s):  
A.A. Atchabarova ◽  
R.R. Tokpayev ◽  
A.T. Kabulov ◽  
S.V. Nechipurenko ◽  
R.A. Nurmanova ◽  
...  

<p>Electrode materials were prepared from activated carbonizates of walnut shell, apricot pits and shungite rock from “Bakyrchik” deposit, East Kazakhstan. Physicochemical characteristics of the obtained samples were studied by the Brunauer-Emett-Taylor method, scanning electron microscopy, Raman spectroscopy and other methods. Electrochemical properties of the obtained materials were studied by the method of cyclic voltammetry. It was found that the samples have an amorphous structure. Samples based on plant raw materials after hydrothermal carbonization at 240 °С during 24 h, have more homogeneous and developed surface. Specific surface area of carbon containing materials based on apricot pits is 1300 m<sup>2</sup>/g, for those on the based on mineral raw material, it is 153 m<sup>2</sup>/g. It was shown that materials after hydrothermal carbonization can be used for catalytic purposes and electrodes after thermal carbonization for analytical and electrocatalytic purposes. Electrode obtained by HTC have electrocatalytic activity. CSC 240 has high background current (slope i/Е is 43 mА V<sup>–1</sup> cm<sup>–2</sup>), low potential of the hydrogen electroreduction (more positive by ~ 0.5 V than samples based on plant raw materials). The reaction of DA determination is more pronounced on the electrodes obtained by HTC 240 °C, 24 h, due to the nature, carbon structure and high specific surface area of obtained samples.</p>


2012 ◽  
Vol 6 (5) ◽  
pp. 939-951 ◽  
Author(s):  
N. Calonne ◽  
C. Geindreau ◽  
F. Flin ◽  
S. Morin ◽  
B. Lesaffre ◽  
...  

Abstract. We used three-dimensional (3-D) images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K). This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res) is computed from the specific surface area of snow (SSA) and the ice density (ρi) as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow density (ρs) and provide the following regression: K = (3.0 &amp;pm; 0.3) res2 exp((−0.0130 &amp;pm; 0.0003)ρs). We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.


1986 ◽  
Vol 86 ◽  
Author(s):  
R. C. Joshi ◽  
B. K. Marsh

ABSTRACTThis paper gives physical and chemical properties of some Canadian fly ashes. Specific surface area, magnetic fraction, water soluble fraction and fraction finer than 45 μm were determined as part of the physical tests. Thermo-gravimetric analyses (TGA) in oxygen and nitrogen were conducted on raw ash samples. The change of pH with time in suspensions of the different ashes in water was also determined. Pozzolanic activity of the ashes with lime for all the ashes was evaluated to measure ash reactivity.The ash activity seems to be related to fineness of the ash measured by the Blaine air permeability method, but not to the fineness measured by nitrogen sorption. Generally the greater the specific surface area, the higher the reactivity of the ash. The correlation was, however, not strong and no other physical or chemical parameter measured in this investigation seems to be related to pozzolanic activity.The results of pH and TGA tests indicated that the ashes differ in many respects from each other. The TGA data suggest that loss on-ignition in many of the ashes is not entirely due to the presence of unburned carbon. Specific surface area determined by various methods seems to provide different values. No characterization parameter was found that was uniquely related to coal type.


2011 ◽  
Vol 356-360 ◽  
pp. 1900-1908 ◽  
Author(s):  
Juliana De Carvalho Izidoro ◽  
Denise Alves Fungaro ◽  
Shao Bin Wang

A Brazilian fly ash sample (CM1) was used to synthesize zeolites by hydrothermal treatment. Products and raw materials were characterized in terms of real density (Helium Pycnometry), specific surface area (BET method), morphological analysis (SEM), chemical composition (XRF) and mineralogical composition (XRD). The zeolites (ZM1) from fly ash were used for metal ion removal from water. Results indicated that hydroxy-sodalite zeolite could be synthesized from fly ash sample. The zeolite presented higher specific surface area and lower SiO2/Al2O3ratio than the ash precursor. The adsorption showed that cadmium is more preferentially adsorbed on ZM1 than zinc. The adsorption equilibrium time for both Zn2+and Cd2+was 20 hours in a batch process. The adsorption isotherms were better fitted by the Langmuir model and the highest percentages of removal using ZM1 were obtained at pH 6 and 5 and doses of 15 and 18 g L-1for Zn2+and Cd2+, respectively. Thermodynamic studies indicated that adsorption of Zn2+and Cd2+by ZM1 was a spontaneous, endothermic process and presented an increase of disorder at the interface solid/solution.


Sign in / Sign up

Export Citation Format

Share Document