P-limitation drives changes in DOM production by aquatic bacteria

2020 ◽  
Vol 85 ◽  
pp. 35-46
Author(s):  
SK Thompson ◽  
JB Cotner

Heterotrophic bacteria are key biogeochemical regulators in freshwater systems. Through both decomposition and production of organic matter, bacteria link multiple biogeochemical cycles together. While there has been a significant amount of work done on understanding the role of microbes in the aquatic carbon cycle, important linkages with other biogeochemical cycles will require more information about how organic matter transformations impact other nutrients, such as phosphorus. In this study, we conducted a culture-based laboratory experiment to examine the production of dissolved organic matter (DOM) by heterotrophic bacteria under varied nutrient conditions. In addition to quantifying the production of dissolved organic carbon (DOC), we also measured the production of dissolved organic phosphorus (DOP) and characterized the microbially produced organic matter using optical properties. Results demonstrated that measurable amounts of DOC and DOP were produced by heterotrophic bacteria under nutrient regimes ranging from carbon-limitation to strong phosphorus-limitation. Additionally, optical characterization of DOM revealed that the organic matter produced by bacteria grown under high phosphorus conditions was highly aromatic with similar optical properties to terrestrially derived organic matter. Overall, these findings suggest that heterotrophic bacteria can be important producers of organic matter in freshwaters and that continued trends of increased nutrient concentrations (eutrophication) may fundamentally change the composition of microbially produced organic matter in freshwater systems.

2008 ◽  
Vol 5 (2) ◽  
pp. 281-298 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia ◽  
F. Cerutti

Abstract. During the BIOSOPE cruise the RV Atalante was dedicated to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). Over the 8000 km covered by the cruise, several different trophic situations were encountered, in particular strong oligotrophic conditions in the South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between the surface and 160–180 m and only trace quantities (<20 nmoles l−1) of regenerated nitrogen (nitrite and ammonium) were detected, even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. Despite this severe nitrogen-depletion, phosphate was always present in significant concentrations (≈0.1 μmoles l−1), while silicic acid was maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) to the west and Chilean upwelling (UPW) to the east were characterized by high nutrient concentrations, one hundred to one thousand fold higher than in the SPG. The distribution of surface chlorophyll reflected the nitrate gradient, the lowest concentrations (0.023 nmoles l−1) being measured at the centre of the SPG, where integrated value throughout the photic layer was very low (≈ 10 mg m−2). However, due to the relatively high concentrations of chlorophyll-a encountered in the DCM (0.2 μg l−1), chlorophyll-a concentrations throughout the photic layer were less variable than nitrate concentrations (by a factor 2 to 5). In contrast to chlorophyll-a, integrated particulate organic matter (POM) remained more or less constant along the study area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), with the exception of the upwelling, where values were two fold higher. The residence time of particulate carbon in the surface water was only 4–5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m−2 d−1), was quite equivalent to the particles flux measured by sediments traps.


2015 ◽  
Vol 12 (10) ◽  
pp. 7209-7255
Author(s):  
A. N. Loginova ◽  
C. Borchard ◽  
J. Meyer ◽  
H. Hauss ◽  
R. Kiko ◽  
...  

Abstract. The Eastern Tropical North Atlantic (ETNA) is an open ocean region with little input of terrestrial dissolved organic matter (DOM), suggesting that pelagic production has to be the main source of DOM. Inorganic nitrogen (DIN) and phosphorus (DIP) concentrations affect pelagic production, leading to DOM modifications. The quantitative and qualitative changes in DOM are often estimated by its optical properties. Colored DOM (CDOM) is often used to estimate dissolved organic carbon (DOC) concentrations by applied techniques, e.g. through remote sensing, whereas DOM properties, such as molecular weight, can be estimated from the slopes of the CDOM absorption spectra (S). Fluorescence properties of CDOM (FDOM) allow discriminating between different structural CDOM properties. The investigation of distribution and cycling of CDOM and FDOM was recognized to be important for understanding of physical and biogeochemical processes, influencing DOM. However, little information is available about effects of nutrient variability on CDOM and FDOM dynamics. Here we present results from two mesocosm experiments conducted with a natural plankton community of the ETNA, where effects of DIP ("Varied P") and DIN ("Varied N") supply on optical properties of DOM were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. S decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was derived by bacteria proportionally to DIN supply. The bound-to-protein amino acid-like FDOM component (Comp.2) was released irrespectively to phytoplankton biomass, but depending on DIP and DIN concentrations, as a part of an overflow mechanism. Under high DIN supply, Comp.2 was removed by bacterial reworking processes, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and "quality" of optically active DOM and, therefore, might bias results of the applied techniques for an estimation of DOC concentrations in open ocean regions.


Author(s):  
Luciana P.M. Brandão ◽  
Peter A. Staehr ◽  
José F. Bezerra-Neto

<p>We investigated how allochthonous and autochthonous sources of dissolved organic matter (DOM) affected the optical conditions and chemical characteristics of two contrasting tropical freshwater systems (Dom Helvécio-DH and Pampulha reservoir) in a dry and rainy period in 2013. We analyzed PAR (photosynthetically active radiation) and UV (ultraviolet) attenuation coefficients, nutrients, chlorophyll-a (Chl-a), dissolved organic matter (DOC) and spectral characteristics of CDOM (colored dissolved organic matter). Significant differences in CDOM sources and quantity were observed, with a dominantly terrestrial input in DH during the rainy period with approximately 50% higher DOC and Chl-a levels, and a doubling in total nitrogen (TN) and total phosphorus (TP) compared to the dry winter period. The eutrophic Pampulha had several fold higher levels of DOC, Chl-a, TN and TP, with organic matter of mostly originating from phytoplankton in both seasons. Differences in source and quantity had strong implications on water transparency, DOC concentrations, CDOM quality and its susceptibility to photo- and biodegradation. DH was several fold clearer in both the UV and PAR spectrum. In DH transparency to both UV and PAR radiation was highest during the summer, suggesting elevated photo- and biodegradation during stratification. Pampulha was most transparent in the dry period even during period of algal bloom. In both systems we observed seasonal variations in concentrations of nutrients and Chl-a, and in DH differences were also found in DOC concentrations as well as the specific UV absorbance (SUVA<sub>254</sub>) and molecular size (M). Our results documents that different sources of DOM and seasonal inputs reflect in the seasonality of apparent and inherent optical properties and nutrients availability with implications for water quality and aquatic community. </p>


2021 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Gabriella Caruso ◽  
Maria Grazia Giacobbe ◽  
Filippo Azzaro ◽  
Franco Decembrini ◽  
Marcella Leonardi ◽  
...  

Bacterial and phytoplankton communities are known to be in close relationships, but how natural and anthropogenic stressors can affect their dynamics is not fully understood. To study the response of microbial communities to environmental and human-induced perturbations, phytoplankton and bacterial communities were seasonally monitored in a Mediterranean coastal ecosystem, Syracuse Bay, where multiple conflicts co-exist. Quali-quantitative, seasonal surveys of the phytoplankton communities (diatoms, dinoflagellates and other taxa), the potential microbial enzymatic activity rates (leucine aminopeptidase, beta-glucosidase and alkaline phosphatase) and heterotrophic culturable bacterial abundance, together with the thermohaline structure and trophic status in terms of nutrient concentrations, phytoplankton biomass (as Chlorophyll-a), and total suspended and particulate organic matter, were carried out. The aim was to integrate microbial community dynamics in the context of the environmental characterization and disentangle microbial patterns related to natural changes from those driven by the anthropic impact on this ecosystem. In spite of the complex relationships between the habitat characteristics, microbial community abundance and metabolic potential, in Syracuse Bay, the availability of organic substrates differently originated by the local conditions appeared to drive the distribution and activity of microbial assemblage. A seasonal pattern of microbial abundances was observed, with the highest concentrations of phytoplankton in spring and low values in winter, whereas heterotrophic bacteria were more abundant during the autumn period. The autumn peaks of the rates of enzymatic activities suggested that not only phytoplankton-derived but also allochthonous organic polymers strongly stimulated microbial metabolism. Increased microbial response in terms of abundance and metabolic activities was detected especially at the sites directly affected by organic matter inputs related to agriculture or aquaculture activities. Nitrogen salts such as nitrate, rather than orthophosphate, were primary drivers of phytoplankton growth. This study also provides insights on the different seasonal scenarios of water quality in Syracuse Bay, which could be helpful for management plans of this Mediterranean coastal environment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yingdong Li ◽  
Zhimeng Xu ◽  
Hongbin Liu

Abstract Background Nutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16 s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet. Results Our results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In the nutrient limited diet, the gut microbial community exhibited a higher fit to NCM (R2 = 0.624 and 0.781, for N- and P-limitation, respectively) when compared with the Control group (R2 = 0.542), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that the growth of D. magna can still benefit from gut microbiota under a nutrient-imbalanced diet. Conclusions Together, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during nutrient limitation.


2020 ◽  
Author(s):  
Yingdong Li ◽  
Zhimeng Xu ◽  
Hongbin Liu

Abstract Nutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet. Our results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In an N- and P-limited diet, the gut microbial community exhibited a higher fitting to NCM with promoted R-square value when compared with the Control group (0.624, 0.781, and 0.542 for N-limited, P-limited, and Control diet, respectively), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that bacteria can still benefit D. magna to achieve better growth under a nutrient-imbalanced diet. Together, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during the tough time of nutrient limitation.


2004 ◽  
Vol 1 (1) ◽  
pp. 681-707 ◽  
Author(s):  
C. van der Zee ◽  
L. Chou

Abstract. We have investigated the seasonal cycle of nutrients and the phosphorus speciation, i.e. dissolved inorganic and organic phosphorus (DIP and DOP) and particulate inorganic and organic phosphorus (PIP and POP), for 10 stations in the Belgian coastal zone. The Belgian part of the southern North Sea is strongly influenced by the river plumes of the Rhine, Meuse and Scheldt. In winter, high nutrient concentrations are observed, whereas in April-May these have all been consumed during the spring bloom and silica or phosphorus limitation develops. The phosphate concentrations increase rapidly again in summer-fall, whereas nitrate and silicate return to their winter values much later. This shows the efficient phosphorus recycling that takes place in the water column. The DOP concentration exhibits two peaks during a seasonal cycle: one in April-May when the phosphate concentration is at its lowest and a second one in fall when the POP content decreases. This indicates two periods of increased phosphorus recycling activity. The seasonal cycle of the DOP is different from that of dissolved organic nitrogen (DON).


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Zhe Xiao ◽  
Xiaochuang Li ◽  
Shouliang Huo

Arsenic accumulation and biotransformation in algae was mostly carried out in a medium that contained far higher nutrient concentrations than that in natural freshwaters. The obtained results might have limited environmental validity and result in a failure to describe authentic arsenic biogeochemical cycles in natural freshwater systems. To validate the assumption, arsenic accumulation, and biotransformation in common bloom forming Microcystis wesenbergii was performed under a high nutrient concentration in BG11 medium (N = 250 mg/L, P = 7.13 mg/L), and adjusted low nutrients that mimicked values in natural freshwaters (N = 1.5 mg/L, P = 0.3 mg/L). The growth rate and maximum M. wesenbergii cell density were much lower in the high nutrient set, but more inhibition was shown with increasing ambient iAs(V) concentrations both in the high and low nutrient sets. The proportion of intracellular contents in total arsenicals decreased with increasing iAs(V) concentrations in both high and low nutrient sets but increased with incubation time. Intracellular iAs(III) was not found in the high nutrient set, while it formed high concentrations that could be comparable to that of an extracellular level in the low nutrient set. M. wesenbergii could methylate arsenic, and a higher proportion of organoarsenicals was formed in the low nutrient set. Lower intracellular MMA(V) and DMA(V) concentrations were found in the high nutrient set; contrarily, they presented a higher concentration that could be comparable to the extracellular ones in the low nutrient set. The results demonstrated that different nutrient regimes could affect arsenic accumulation and biotransformation in M. wesenbergii, and low nutrient concentrations could inhibit the excretion of iAs(III), MMA(V) and DMA(V) out of cells. Further investigations should be based on natural freshwater systems to obtain an authentic arsenic accumulation and biotransformation in cyanobacteria.


2020 ◽  
Author(s):  
Yingdong Li ◽  
Zhimeng Xu ◽  
Hongbin Liu

Abstract BackgroundNutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet.ResultsOur results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In the nutrient limited diet, the gut microbial community exhibited a higher fit to NCM (R2=0.624 and 0.781, for N- and P-limitation, respectively) when compared with the Control group (R2=0.542), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that the growth of D. magna can still benefit from gut microbiota under a nutrient-imbalanced diet.ConclusionsTogether, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during nutrient limitation.


Sign in / Sign up

Export Citation Format

Share Document