scholarly journals Nutrient-imbalanced conditions shift the interplay between zooplankton and gut microbiota

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yingdong Li ◽  
Zhimeng Xu ◽  
Hongbin Liu

Abstract Background Nutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16 s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet. Results Our results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In the nutrient limited diet, the gut microbial community exhibited a higher fit to NCM (R2 = 0.624 and 0.781, for N- and P-limitation, respectively) when compared with the Control group (R2 = 0.542), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that the growth of D. magna can still benefit from gut microbiota under a nutrient-imbalanced diet. Conclusions Together, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during nutrient limitation.

2020 ◽  
Author(s):  
Yingdong Li ◽  
Zhimeng Xu ◽  
Hongbin Liu

Abstract BackgroundNutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet.ResultsOur results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In the nutrient limited diet, the gut microbial community exhibited a higher fit to NCM (R2=0.624 and 0.781, for N- and P-limitation, respectively) when compared with the Control group (R2=0.542), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that the growth of D. magna can still benefit from gut microbiota under a nutrient-imbalanced diet.ConclusionsTogether, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during nutrient limitation.


2020 ◽  
Author(s):  
Yingdong Li ◽  
Zhimeng Xu ◽  
Hongbin Liu

Abstract Nutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet. Our results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In an N- and P-limited diet, the gut microbial community exhibited a higher fitting to NCM with promoted R-square value when compared with the Control group (0.624, 0.781, and 0.542 for N-limited, P-limited, and Control diet, respectively), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that bacteria can still benefit D. magna to achieve better growth under a nutrient-imbalanced diet. Together, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during the tough time of nutrient limitation.


2020 ◽  
Author(s):  
Yingdong Li ◽  
Zhimeng Xu ◽  
Hongbin Liu

Abstract Nutrient stoichiometry of phytoplankton changes frequently with aquatic ambient nutrient concentrations, which is mainly influenced by environmental factors and the dynamics of ecosystems. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome sequencing, neutral community model (NCM), and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota on nutrient-imbalanced algal diet. Our results showed that in nutrient depleted water, nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate and the assimilation of ammonia under phosphorus and nitrogen limited diet, respectively. Comparing with nutrient replete group, both N and P limitation had markedly promoted the gene expression of gut microbial for organic matter degradation but repressed that for anaerobic metabolisms. Besides, with N and P limited diet, the gut microbial community exhibited a higher fitting to NCM, suggesting increased ambient-gut exchange process favored by compensatory feeding of D. magna. This process also elevated oxygen level in the gut and explained the repressed anaerobic metabolism of gut microbes. Further axenic grazing experiment revealed that bacteria can still benefit D. magna to achieve a better growth under nutrient-imbalanced diet by enhancing their digestion capability. Together, these results demonstrated that under nutrient-imbalanced diet, the microbes not only benefit themself by absorbing excess nutrients inside zooplankton gut but also benefit zooplankton to achieve a better adaptation.


Metabolites ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 226 ◽  
Author(s):  
Seung-Ho Seo ◽  
Tatsuya Unno ◽  
Seong-Eun Park ◽  
Eun-Ju Kim ◽  
Yu-Mi Lee ◽  
...  

The objective of this study was to examine the anti-colitis activity of Jakyakgamcho-tang (JGT) in dextran sulfate sodium (DSS)-induced colitis and explore changes of the gut microbial community using 16S rRNA amplicon sequencing and metabolomics approaches. It was found that treatment with JGT or 5-aminosalicylic acid (5-ASA) alleviated the severity of colitis symptoms by suppressing inflammatory cytokine levels of IL-6, IL-12, and IFN-γ. The non-metric multidimensional scaling analysis of gut microbiome revealed that JGT groups were clearly separated from the DSS group, suggesting that JGT administration altered gut microbiota. The operational taxonomic units (OTUs) that were decreased by DSS but increased by JGT include Akkermansia and Allobaculum. On the other hand, OTUs that were increased by DSS but decreased by 5-ASA or JGT treatments include Bacteroidales S24-7, Ruminococcaceae, and Rikenellaceae, and the genera Bacteroides, Parabacteroides, Oscillospira, and Coprobacillus. After JGT administration, the metabolites, including most amino acids and lactic acid that were altered by colitis induction, became similar to those of the control group. This study demonstrates that JGT might have potential to effectively treat colitis by restoring dysbiosis of gut microbiota and host metabolites.


2018 ◽  
Vol 15 (3) ◽  
pp. 919-936 ◽  
Author(s):  
Emily Ane Dionizio ◽  
Marcos Heil Costa ◽  
Andrea D. de Almeida Castanho ◽  
Gabrielle Ferreira Pires ◽  
Beatriz Schwantes Marimon ◽  
...  

Abstract. Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest–savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon–Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961–1990 and interannual climate variability for 1948–2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon–Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.


2020 ◽  
Vol 85 ◽  
pp. 35-46
Author(s):  
SK Thompson ◽  
JB Cotner

Heterotrophic bacteria are key biogeochemical regulators in freshwater systems. Through both decomposition and production of organic matter, bacteria link multiple biogeochemical cycles together. While there has been a significant amount of work done on understanding the role of microbes in the aquatic carbon cycle, important linkages with other biogeochemical cycles will require more information about how organic matter transformations impact other nutrients, such as phosphorus. In this study, we conducted a culture-based laboratory experiment to examine the production of dissolved organic matter (DOM) by heterotrophic bacteria under varied nutrient conditions. In addition to quantifying the production of dissolved organic carbon (DOC), we also measured the production of dissolved organic phosphorus (DOP) and characterized the microbially produced organic matter using optical properties. Results demonstrated that measurable amounts of DOC and DOP were produced by heterotrophic bacteria under nutrient regimes ranging from carbon-limitation to strong phosphorus-limitation. Additionally, optical characterization of DOM revealed that the organic matter produced by bacteria grown under high phosphorus conditions was highly aromatic with similar optical properties to terrestrially derived organic matter. Overall, these findings suggest that heterotrophic bacteria can be important producers of organic matter in freshwaters and that continued trends of increased nutrient concentrations (eutrophication) may fundamentally change the composition of microbially produced organic matter in freshwater systems.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 175 ◽  
Author(s):  
H.P.S.U. Chandrarathna ◽  
T.D. Liyanage ◽  
S.L. Edirisinghe ◽  
S.H.S. Dananjaya ◽  
E.H.T. Thulshan ◽  
...  

This study evaluated the modulation of gut microbiota, immune responses, and gut morphometry in C57BL/6 mice, upon oral administration of S. maxima-derived modified pectin (SmP, 7.5 mg/mL) and pectin nanoparticles (SmPNPs; 7.5 mg/mL). Metagenomics analysis was conducted using fecal samples, and mice duodenum and jejunum were used for analyzing the immune response and gut morphometry, respectively. The results of metagenomics analysis revealed that the abundance of Bacteroidetes in the gut increased in response to both modified SmP and SmPNPs (75%) as compared with that in the control group (66%), while that of Firmicutes decreased in (20%) as compared with that in the control group (30%). The mRNA levels of mucin, antimicrobial peptide, and antiviral and gut permeability-related genes in the duodenum were significantly (p < 0.05) upregulated (> 2-fold) upon modified SmP and SmPNPs feeding. Protein level of intestinal alkaline phosphatase was increased (1.9-fold) in the duodenum of modified SmPNPs feeding, evidenced by significantly increased goblet cell density (0.5 ± 0.03 cells/1000 µm2) and villi height (352 ± 10 µm). Our results suggest that both modified SmP and SmPNPs have the potential to modulate gut microbial community, enhance the expression of immune related genes, and improve gut morphology.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 106
Author(s):  
María Izco ◽  
Ariane Vettorazzi ◽  
Maria de Toro ◽  
Yolanda Sáenz ◽  
Lydia Alvarez-Erviti

Gut microbiota plays crucial roles in maintaining host health. External factors, such as diet, medicines, and environmental toxins, influence the composition of gut microbiota. Ochratoxin A (OTA) is one of the most prevalent and relevant mycotoxins and is a highly abundant food and animal feed contaminant. In the present study, we aimed to investigate OTA gut microbiome toxicity in mice sub-chronically exposed to low doses of OTA (0.21, 0.5, and 1.5 mg/kg body weight) by daily oral gavage for 28 days. Fecal microbiota from control and OTA-treated mice was analyzed using 16S ribosomal RNA (rRNA) gene sequencing followed by metagenomics. OTA exposure caused marked changes in gut microbial community structure, including the decrease in the diversity of fecal microbiota and the relative abundance of Firmicutes, as well as the increase in the relative abundance of Bacteroidetes at the phylum level. At the family level, six bacterial families (unclassified Bacteroidales, Porphyromonadaceae, unclassified Cyanobacteria, Streptococcaceae, Enterobacteriaceae, Ruminococcaceae) were significantly altered by OTA exposure. Interestingly, OTA-induced changes were observed in the lower-dose OTA groups, while high-dose OTA group microbiota was similar to control group. Our results demonstrated that sub-chronic exposure at low doses of OTA alters the structure and diversity of the gut microbial community.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P &lt; 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P &lt; 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Czech ◽  
Eugeniusz Ryszard Grela ◽  
Martyna Kiesz

AbstractThe aim of the study was to assess the effect of fermented dried soybean (FSBM) and/or fermented rapeseed meal (FRSM) in diets for weaned piglets on production results, nutrient digestibility, gastrointestinal tract histology, and the composition of the gut microbiota. Piglets in the control group received standard diets with soybean meal. Animals in all experimental groups received diets in which a portion of the soybean meal was replaced: in group FR—8% FRSM; in group FR/FS—6% FRSM and 2% FSBM; in group FS/FR—2% FRSM and 6% FSBM and in group FS—8% FSBM. The use of 8% FRSM or 6% FRSM and 2% FSBM in the piglet diets had a positive effect on average daily gains. Piglets from the FR and FR/FS groups had the highest feed conversion rate. Group FS/FR and FS piglets had significantly lower mortality and lower incidence of diarrhoea. Piglets fed a diet with the fermented components, in particular with 8% FRSM or 6% FRSM and 2% FSBM, exhibited a positive effect on the microbiological composition and histology of intestines, which resulted in improved nutrient digestibility coefficients (ATTD and AID).


Sign in / Sign up

Export Citation Format

Share Document