scholarly journals Role of the research standpoint in integrating global-scale and local-scale research

2001 ◽  
Vol 19 ◽  
pp. 173-178 ◽  
Author(s):  
EL Malone ◽  
S Rayner
Keyword(s):  
2021 ◽  
Author(s):  
Laura Miller ◽  
Raimondo Penta

AbstractWe derive the balance equations for a double poroelastic material which comprises a matrix with embedded subphases. We assume that the distance between the subphases (the local scale) is much smaller than the size of the domain (the global scale). We assume that at the local scale both the matrix and subphases can be described by Biot’s anisotropic, heterogeneous, compressible poroelasticity (i.e. the porescale is already smoothed out). We then decompose the spatial variations by means of the two-scale homogenization method to upscale the interaction between the poroelastic phases at the local scale. This way, we derive the novel global scale model which is formally of poroelastic-type. The global scale coefficients account for the complexity of the given microstructure and heterogeneities. These effective poroelastic moduli are to be computed by solving appropriate differential periodic cell problems. The model coefficients possess properties that, once proved, allow us to determine that the model is both formally and substantially of poroelastic-type. The properties we prove are a) the existence of a tensor which plays the role of the classical Biot’s tensor of coefficients via a suitable analytical identity and b) the global scale scalar coefficient $$\bar{\mathcal {M}}$$ M ¯ is positive which then qualifies as the global Biot’s modulus for the double poroelastic material.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Muntaha Talat ◽  
Shaan Bibi Jaffri ◽  
Neelofer Shaheen

AbstractConventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.


Author(s):  
Ben Raffield

AbstractIn recent years, archaeological studies of long-term change and transformation in the human past have often been dominated by the discussion of dichotomous processes of ‘collapse’ and ‘resilience’. These discussions are frequently framed in relatively narrow terms dictated by specialist interests that place an emphasis on the role of single ‘trigger’ factors as motors for historic change. In order to address this issue, in this article I propose that the study of the ‘shatter zone’—a term with origins in physical geography and geopolitics that has been more recently harnessed in anthropological research—has the potential to facilitate multi-scalar, interdisciplinary analyses of the ways in which major historical changes unfold across both space and time, at local, regional, and inter-regional levels. This article unpacks the concept of the shatter zone and aligns this with existing archaeological frameworks for the study of long-term adaptive change. I then situate these arguments within the context of recent studies of colonial interaction and conflict in the Eastern Woodlands of North America during the sixteenth to eighteenth century. The study demonstrates how a more regulated approach to the shatter zone has the potential to yield new insights on the ways in which populations mitigate and react to instability and change while also facilitating comparative studies of these processes on a broader, global scale.


2021 ◽  
Vol 7 (2) ◽  
pp. 124
Author(s):  
Charmaine Retanal ◽  
Brianna Ball ◽  
Jennifer Geddes-McAlister

Post-translational modifications (PTMs) change the structure and function of proteins and regulate a diverse array of biological processes. Fungal pathogens rely on PTMs to modulate protein production and activity during infection, manipulate the host response, and ultimately, promote fungal survival. Given the high mortality rates of fungal infections on a global scale, along with the emergence of antifungal-resistant species, identifying new treatment options is critical. In this review, we focus on the role of PTMs (e.g., phosphorylation, acetylation, ubiquitination, glycosylation, and methylation) among the highly prevalent and medically relevant fungal pathogens, Candida spp., Aspergillus spp., and Cryptococcus spp. We explore the role of PTMs in fungal stress response and host adaptation, the use of PTMs to manipulate host cells and the immune system upon fungal invasion, and the importance of PTMs in conferring antifungal resistance. We also provide a critical view on the current knowledgebase, pose questions key to our understanding of the intricate roles of PTMs within fungal pathogens, and provide research opportunities to uncover new therapeutic strategies.


2020 ◽  
Vol 71 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Ilias Attaye ◽  
Sara-Joan Pinto-Sietsma ◽  
Hilde Herrema ◽  
Max Nieuwdorp

Cardiometabolic disease (CMD), such as type 2 diabetes mellitus and cardiovascular disease, contributes significantly to morbidity and mortality on a global scale. The gut microbiota has emerged as a potential target to beneficially modulate CMD risk, possibly via dietary interventions. Dietary interventions have been shown to considerably alter gut microbiota composition and function. Moreover, several diet-derived microbial metabolites are able to modulate human metabolism and thereby alter CMD risk. Dietary interventions that affect gut microbiota composition and function are therefore a promising, novel, and cost-efficient method to reduce CMD risk. Studies suggest that fermentable carbohydrates can beneficially alter gut microbiota composition and function, whereas high animal protein and high fat intake negatively impact gut microbiota function and composition. This review focuses on the role of macronutrients (i.e., carbohydrate, protein, and fat) and dietary patterns (e.g., vegetarian/vegan and Mediterranean diet) in gut microbiota composition and function in the context of CMD.


2004 ◽  
Vol 94 (2) ◽  
pp. 111-121 ◽  
Author(s):  
P.A.V. Borges ◽  
V.K. Brown

AbstractThe arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local–regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= α diversity) and regional species richness was estimated at the pasture level (= γ diversity) with the ‘first-order-Jackknife’ estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of α and β diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing β-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.


2014 ◽  
Vol 30 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Cecilia A.L. Dahlsjö ◽  
Catherine L. Parr ◽  
Yadvinder Malhi ◽  
Homathevi Rahman ◽  
Patrick Meir ◽  
...  

Abstract:Termite species and functional groups differ among regions globally (the functional-diversity anomaly). Here we investigate whether similar differences in biomass and abundance of termites occur among continents. Biomass and abundance data were collected with standardized sampling in Cameroon, Malaysia and Peru. Data from Peru were original to this study, while data from Cameroon and Malaysia were compiled from other sources. Species density data were sampled using a standardized belt transect (100 × 2 m) while the biomass and abundance measurements were sampled using a standardized protocol based on 2 × 2-m quadrats. Biomass and abundance data confirmed patterns found for species density and thus the existence of the functional diversity anomaly: highest estimates for biomass and abundance were found in Cameroon (14.5 ± 7.90 g m−2 and 1234 ± 437 ind m−2) followed by Malaysia (0.719 ± 0.193 g m−2 and 327 ± 72 ind m−2) and then Peru (0.345 ± 0.103 g m−2 and 130 ± 39 ind m−2). The biomass and abundance for each functional group were significantly different across sites for most termite functional groups. Biogeographical distribution of lineages was the primary cause for the functional diversity anomaly with true soil-feeding termites dominating in Cameroon and the absence of fungus-growing termites from Peru. These findings are important as the biomass and abundance of functional groups may be linked to ecosystem processes. Although this study allowed for comparisons between data from different regions further comparable data are needed to enhance the understanding of the role of termites in ecosystem processes on a global scale.


2015 ◽  
Vol 21 ◽  
pp. 44-52 ◽  
Author(s):  
Valerio Amici ◽  
Duccio Rocchini ◽  
Goffredo Filibeck ◽  
Giovanni Bacaro ◽  
Elisa Santi ◽  
...  

Author(s):  
Lisa Linville ◽  
Ronald Chip Brogan ◽  
Christopher Young ◽  
Katherine Anderson Aur

ABSTRACT During the development of new seismic data processing methods, the verification of potential events and associated signals can present a nontrivial obstacle to the assessment of algorithm performance, especially as detection thresholds are lowered, resulting in the inclusion of significantly more anthropogenic signals. Here, we present two 14 day seismic event catalogs, a local‐scale catalog developed using data from the University of Utah Seismograph Stations network, and a global‐scale catalog developed using data from the International Monitoring System. Each catalog was built manually to comprehensively identify events from all sources that were locatable using phase arrival timing and directional information from seismic network stations, resulting in significant increases compared to existing catalogs. The new catalogs additionally contain challenging event sequences (prolific aftershocks and small events at the detection and location threshold) and novel event types and sources (e.g., infrasound only events and long‐wall mining events) that make them useful for algorithm testing and development, as well as valuable for the unique tectonic and anthropogenic event sequences they contain.


Leonardo ◽  
2011 ◽  
Vol 44 (3) ◽  
pp. 240-243 ◽  
Author(s):  
David Crandall ◽  
Noah Snavely

Social photo-sharing sites like Flickr contain vast amounts of latent information about the world and human behavior. The authors describe their recent work in building automatic algorithms that analyze large collections of imagery in order to extract some of this information. At a global scale, geo-tagged photographs can be used to identify the most photographed places on Earth, as well as to infer the names and visual representations of these places. At a local scale, the authors build detailed 3D models of a scene by combining information from thousands of 2D photographs taken by different people and from different vantage points.


Sign in / Sign up

Export Citation Format

Share Document