scholarly journals Chemokine (C-X-C motif) receptor 4 regulates lung endothelial barrier permeability during resuscitation from hemorrhagic shock

2019 ◽  
pp. 675-679 ◽  
Author(s):  
F.S. Babu ◽  
H.M. LaPorte ◽  
S.P. Nassoiy ◽  
M. Majetschak

Chemokine (C-X-C motif) receptor 4 (CXCR4) agonists have been shown to protect lung endothelial barrier function in vitro. In vivo effects of CXCR4 modulation on lung endothelial permeability are unknown. Here we tested the effects of the CXCR4 agonist ubiquitin and the antagonist AMD3100 on lung vascular permeability and cytokine concentrations in a rat hemorrhage model. Animals were hemorrhaged (mean arterial blood pressure 30 mmHg for 30 min), treated with vehicle, ubiquitin (0.7 and 3.5 μmol/kg) or AMD3100 (3.5 μmol/kg), and resuscitated with crystalloids. Evans blue extravasation was employed to quantify lung vascular permeability. Ubiquitin dose-dependently reduced Evans blue extravasation into the lung. AMD3100 increased Evans blue extravasation. With AMD3100, TNFα levels in lung homogenates were increased; while TNFα levels were lower with ubiquitin, these differences did not reach statistical significance. Our findings suggest that CXCR4 regulates lung vascular permeability and further point towards CXCR4 as a drug target to confer lung protection during resuscitation from traumatic-hemorrhagic shock.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 497-497
Author(s):  
Laurent Burnier ◽  
Ranjeet Kumar Sinha ◽  
Eveline A. Bouwens ◽  
John H. Griffin ◽  
Laurent O. Mosnier

Abstract Abstract 497 Activated protein C (APC) exerts cytoprotective activities on vascular endothelium that require protease-activated receptor 1 (PAR1) whereas thrombin acting via PAR1 causes endothelial disruptive, proinflammatory actions. Last year our laboratory elucidated a unique biochemical mechanism leading to the APC's cytoprotective signaling initiation, revealing that APC can cleave PAR1 at Arg46 and that a synthetic peptide, TR47, comprising PAR1 residues 47–66, stimulates signaling in endothelial cells reflected in Akt phosphorylation and anti-apoptotic activity (see Blood 2011;118:534). Here we report novel in vitro and in vivo insights concerning the downstream effects of APC-specific cleavage at Arg46. First, using the EA.hy926 endothelial cell line, we showed that TR47 induced sustained phosphorylation of glycogen synthase kinase 3 beta (GSK3beta) at Ser9 starting at 30 min. Moreover, the TR47 time-course was similar to Akt phosphorylation. A scrambled control peptide (scrTR47) was unable to induce GSK3beta phosphorylation. TR47-induced phosphorylation of GSK3beta was inhibited by the PAR1 antagonist SCH79797, indicating that TR47-induced signaling required PAR1. Cleavage of PAR1 at Arg41 by thrombin induces phosphorylation of extracellular-regulated kinase (ERK1/2). TRAP peptide (TFLLRNPNDK), the canonical PAR1 agonist, induced strong and immediate phosphorylation of ERK whereas neither TR47 nor scrTR47 induced ERK phosphorylation. In contrast, treatment of EA.hy926 endothelial cells with TRAP did not result in phosphorylation of Akt at Ser473 or GSK3beta at Ser9. In agreement with peptides data, thrombin did not induce Akt or GSK3beta phosphorylation whereas APC did so. Thus, PAR1 cleavage at Arg46 results in phosphorylation of Ser473-Akt and Ser9-GSK3beta, whereas cleavage of PAR1 at Arg41 results in phosphorylation of ERK1/2. Activation of PAR1 by thrombin results in Ras homolog gene family member A (RhoA) activation and disruption of the endothelial barrier. In contrast, activation of PAR1 with APC results in activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) and endothelial barrier protection. Using active Rac1 pulldown assays with p21-activated kinase (PAK-1)-conjugated beads and quantifying the ratio of active Rac1 over total Rac1, we showed that both TR47 and APC, but not scrTR47, activated Rac1. In an endothelium barrier transwell assay using Evans Blue to quantify thrombin-induced leakage, TR47 and APC, but not scrTR47 or TRAP, decreased vascular permeability by 40% (P < 0.05). Thus, cleavage of PAR1 at Arg46 but not at Arg41 results in endothelial barrier protective effects in vitro. To test whether TR47 also reduces vascular leakage in vivo, we setup a novel modification of the modified Miles assay to assess the effect of TR47 on VEGF-induced vascular leakage in the skin. Immunocompetent SKH1 hairless mice were used to avoid the need for hair removal that often can result in artifactual leakage due to inflammation of the skin. Evans Blue was injected intravenously followed 30 min later by 2μg of recombinant mouse APC, 125 μg of TR47 or PBS (i.v.). Recombinant VEGF-165 (75 ng, subcutaneous) or vehicle (BSA) was injected thereafter on the abdomen. After 30 min mice were placed on the Odyssey infrared fluorescence Imager and the total amount of vascular leakage was quantified as the amount of Evans Blue accumulated in the VEGF or BSA injection sites determined by infrared fluorescent at 700 nm. APC decreased leakage by 50%. TR47, but not scrTR47, injected 30 min before VEGF decreased vascular leakage by 45% (P < 0.05, n = 6 mice) compared to PBS control. Neither TR47 nor scrTR47 affected vascular leakage in the absence of VEGF. In summary, the TR47 peptide representing the sequence of the novel N-terminus that is generated by cleavage of PAR1 at Arg46 exerts remarkable biologic activities in vitro and in vivo that reflect the general cytoprotective activity profile of APC but not that of thrombin. Based on these results we propose a novel paradigm for the biochemical mechanisms of APC via PAR1 involving generation of a new N-terminal tethered ligand, which is a biased agonist that initiates APC-like cytoprotective signaling pathways. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 295 (2) ◽  
pp. L363-L369 ◽  
Author(s):  
Ramaswamy Ramchandran ◽  
Dolly Mehta ◽  
Stephen M. Vogel ◽  
Muhammad K. Mirza ◽  
Panos Kouklis ◽  
...  

Activation of the Rho GTPase Cdc42 has been shown in endothelial cell monolayers to prevent disassembly of interendothelial junctions and the increase in endothelial permeability. Here, we addressed the in vivo role of Cdc42 activity in mediating endothelial barrier protection in lungs by generating mice expressing the dominant active mutant V12Cdc42 protein in vascular endothelial cells targeted via the VE-cadherin promoter. These mice developed normally and exhibited constitutively active GTP-bound Cdc42. The increase in lung vascular permeability and gain in tissue water content in response to intraperitoneal lipopolysaccharide challenge (7 mg/kg) were markedly attenuated in the transgenic mice. To address the basis of the protective effect, we observed that expression of V12Cdc42 mutant in endothelial monolayers reduced the decrease in transendothelial electrical resistance, a measure of opening of interendothelial junctions, thus indicating that Cdc42 activity preserved junctional integrity. RhoA activity in V12Cdc42-expressing endothelial monolayers was reduced compared with untransfected cells, suggesting that activated Cdc42 functions by counteracting the canonical RhoA-mediated mechanism of endothelial hyperpermeability. Therefore, Cdc42 activity of microvessel endothelial cells is a critical determinant of junctional barrier restrictiveness and may represent a means of therapeutically modulating increased lung vascular permeability and edema formation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tinneke Delvaeye ◽  
Maarten A. J. De Smet ◽  
Stijn Verwaerde ◽  
Elke Decrock ◽  
Aleksandra Czekaj ◽  
...  

Abstract Upon intravenous injection of tumour necrosis factor (TNF) in mice, a systemic inflammatory response syndrome (SIRS) is initiated, characterized by an acute cytokine storm and induction of vascular hyperpermeability. Connexin43 hemichannels have been implicated in various pathological conditions, e.g. ischemia and inflammation, and can lead to detrimental cellular outcomes. Here, we explored whether targeting connexin43 hemichannels could alleviate TNF-induced endothelial barrier dysfunction and lethality in SIRS. Therefore, we verified whether administration of connexin43-targeting-peptides affected survival, body temperature and vascular permeability in vivo. In vitro, TNF-effects on connexin43 hemichannel function were investigated by single-channel studies and Ca2+-imaging. Blocking connexin43 hemichannels with TAT-Gap19 protected mice against TNF-induced mortality, hypothermia and vascular leakage, while enhancing connexin43 hemichannel function with TAT-CT9 provoked opposite sensitizing effects. In vitro patch-clamp studies revealed that TNF acutely activated connexin43 hemichannel opening in endothelial cells, which was promoted by CT9, and inhibited by Gap19 and intracellular Ca2+-buffering. In vivo experiments aimed at buffering intracellular Ca2+, and pharmacologically targeting Ca2+/calmodulin-dependent protein kinase-II, a known modulator of endothelial barrier integrity, demonstrated their involvement in permeability alterations. Our results demonstrate significant benefits of inhibiting connexin43 hemichannels to counteract TNF-induced SIRS-associated vascular permeability and lethality.


2008 ◽  
Vol 295 (3) ◽  
pp. L431-L439 ◽  
Author(s):  
Jacqueline Larson ◽  
Stacey Schomberg ◽  
William Schroeder ◽  
Todd C. Carpenter

Mediators of angiogenesis such as VEGFs and angiopoietins may regulate pulmonary vascular permeability under normal and pathological conditions. Ephrin family receptor tyrosine kinases are expressed in the vasculature and also regulate angiogenesis under some circumstances, but whether they also modulate lung vascular permeability is unknown. We hypothesized that stimulation of lung endothelial EphA receptors with ephrin-a1 ligand would alter pulmonary vascular permeability and tested this idea in vivo and in vitro. We found that ephrin-a1 ligand and EphA2 receptors are expressed in distal normal lung vasculature and that their expression is increased in injured lung, suggesting a link to mechanisms of increased permeability. Intravenous injection of ephrin-a1 caused a large increase in the leakage of labeled albumin into the lungs of rats within 30 min (293 ± 27 vs. 150 ± 6 ng/mg dry lung, P < 0.01), along with histological evidence of the formation of endothelial disruptions. In cultured lung vascular endothelial cells, stimulation with ephrin-a1 increased monolayer permeability by 44% ( P < 0.01), a permeability change similar to that seen with VEGF stimulation of the same cells. Ephrin-a1 stimulation in vivo and in vitro was associated with histological evidence for disruptions of tight and adherens junctions. These observations describe a novel role for ephrin-a1 and EphA receptors in the regulation of vascular permeability in the lung.


2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Author(s):  
Mohammed Ajebli ◽  
Mohamed Eddouks

Aims and objective: The aim of the study was to investigate the effect of aqueous aerial part extract of Mentha pulegium L. (Pennyrile) (MPAE) on arterial pressure parameters in rats. Background: Mentha pulegium is a medicinal plant used to treat hypertension in Morocco. Material and methods: In the current study, MPAE was prepared and its antihypertensive activity was pharmacologically investigated. L-NAME-hypertensive and normotensive rats have received orally MPAE (180 and 300 mg/kg) during six hours for the acute experiment and during seven days for the sub-chronic treatment. Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. While, in the in vitro experiment, isolated denuded and intact thoracic aortic rings were suspended in a tissue bath system and the tension changes were recorded. Results: A fall in blood pressure was observed in L-NAME-induced hypertensive treated with MPAE. The extract also produced a dose-dependent relaxation of aorta pre-contracted with NE and KCl. The study showed that the vasorelaxant ability of MPAE seems to be exerted through the blockage of extracellular Ca2+ entry. Conclusion: The results demonstrate that the extract of pennyrile exhibits antihypertensive activity. In addition, the effect may be, at least in part, due to dilation of blood vessels via blockage of Ca2+ channels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


Author(s):  
Thriveni Vasanth Kumar ◽  
Manjunatha H. ◽  
Rajesh Kp

Objective: Dietary curcumin and capsaicin are well known for their health beneficial potencies. The current study was done to assess the anti-inflammatory activity of curcumin, capsaicin and their combination by employing in vitro and in vivo models.Methods: We investigated the protective effect of curcumin, capsaicin and their combination using in vitro heat induced human red blood cell (HRBC) membrane stabilisation, in vivo 3% agar induced leukocyte mobilisation and acetic acid induced vascular permeability assay.Results: Curcumin, capsaicin and their combination exhibited concentration dependent protective effect against heat-induced HRBC membrane destabilisation, while combined curcumin and capsaicin restored 87.0±0.64 % membrane stability and it is found to be better than curcumin, capsaicin and diclofenac sodium (75.0±0.25. 72±0.9 and 80.0±0.31 %) protective effect. In agar suspension induced leukocyte mobilization assay, the combined curcumin and capsaicin had shown 39.5±1.58 % of inhibition compared to individual curcumin and capsaicin, which showed moderate inhibition of 16.0±3.14 and 21.6±2.17 % respectively. Besides, the combined curcumin and capsaicin had shown highly significant inhibition of acetic acid-induced vascular permeability in rats (62.0±3.14 %), whereas individual curcumin and capsaicin showed moderate inhibition of vascular permeability with 36.0±2.41 and 43.0±1.92 % respectively.Conclusion: This study demonstrates the significant anti-inflammatory property of combined curcumin and capsaicin at half of the individual concentration of curcumin and capsaicin.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Thomas Helbing ◽  
Elena Ketterer ◽  
Bianca Engert ◽  
Jennifer Heinke ◽  
Sebastian Grundmann ◽  
...  

Introduction: Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome, are associated with high morbidity and mortality in patients. During the progression of ALI, the endothelial cell barrier of the pulmonary vasculature becomes compromised, leading to pulmonary edema, a characteristic feature of ALI. It is well-established that EC barrier dysfunction is initiated by cytoskeletal remodeling, which leads to disruption of cell-cell contacts and formation of paracellular gaps, allowing penetration of protein-rich fluid and inflammatory cells. Bone morphogenetic proteins (BMPs) are important players in endothelial dysfunction and inflammation but their effects on endothelial permeability in ALI have not been investigated until now. Methods and Results: As a first approach to assess the role of BMPs in acute lung injury we analysed BMP4 and BMPER expression in an infectious (LPS) and a non-infectious (bleomycin) mouse models of acute lung injury. In both models BMP4 and BMPER protein expression levels were reduced demonstrated by western blots, suggesting that BMPs are involved in progression ALI. To assess the role of BMPs on vascular leakage, a key feature of ALI, BMP activity in mice was inhibited by i.p. administration of LDN193189, a small molecule that blocks BMP signalling. After 3 days Evans blue dye (EVB) was administered i.v. and dye extravasation into the lungs was quantified as a marker for vascular leakage. Interestingly, LDN193189 significantly increased endothelial permeability compared to control lungs, indicating that BMP signaling is involved in maintenance of endothelial barrier function. To quantify effects of BMP inhibition on endothelial barrier function in vitro, HUVECs were seeded onto transwell filters and were exposed to LDN193189. After 3 days FITC-dextrane was added and passage into the lower chamber was quantified as a marker for endothelial barrier function. Thrombin served as a positive control. As expected from our in vivo experiments inhibition of BMP signaling by LDN193189 enhanced FITC-dextrane passage. To study specific effects of BMPs on endothelial barrier function, two protagonist of the BMP family, BMP2 and BMP4, or BMP modulator BMPER were tested in the transwell assay in vitro. Interestingly BMP4 and BMPER, but not BMP2, reduced FITC-dextrane passage demonstrating that BMP4 and BMPER improved endothelial barrier function. Vice versa, specific knock down of BMP4 or BMPER increased leakage in transwell assays. Im immuncytochemistry silencing of BMPER or BMP4 induced hyperpermeability as a consequence of a pro-inflammatory endothelial phenotype characterised by reduced cell-cell contacts and increased actin stress fiber formation. Additionally, the pro-inflammatory endothelial phenotype was confirmed by real-time revealing increased expression of adhesion molecules ICAM-1 or proinflammatory cytokines such as IL-6 and IL-8 in endothelial cells after BMPER or BMP4 knock down. Confirming these in vitro results BMPER +/- mice exhibit increased extravasation of EVB into the lungs, indicating that partial loss of BMPER impairs endothelial barrier function in vitro and in vivo. Conclusion: We identify BMPER and BMP4 as local regulators of vascular permeability. Both are protective for endothelial barrier function and may open new therapeutic avenues in the treatment of acute lung injury.


Author(s):  
Bo-Wen Xu ◽  
Zhi-Qiang Cheng ◽  
Xu-Ting Zhi ◽  
Xiao-Mei Yang ◽  
Zhi-Bo Yan

Abstract Endothelial barrier integrity requires recycling of VE-cadherin to adherens junctions. Both p18 and Rab11a play significant roles in VE-cadherin recycling. However, the underlying mechanism and the role of p18 in activating Rab11a have yet to be elucidated. Performing in vitro and in vivo experiments, we showed that p18 protein bound to VE-cadherin before Rab11a through its VE-cadherin-binding domain (aa 1–39). Transendothelial resistance showed that overexpression of p18 promoted the circulation of VE-cadherin to adherens junctions and the recovery of the endothelial barrier. Silencing of p18 caused endothelial barrier dysfunction and prevented Rab11a-positive recycling endosome accumulation in the perinuclear recycling compartments. Furthermore, p18 knockdown in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide and cecal ligation puncture. This study showed that p18 regulated the pulmonary endothelial barrier function in vitro and in vivo by regulating the binding of Rab11a to VE-cadherin and the activation of Rab11a.


Sign in / Sign up

Export Citation Format

Share Document