scholarly journals Investigation of the properties and effects of salvia officinalis l. on the viability, steroidogenesis and Reactive Oxygen Species (ROS) production in TM3 leydig cells in vitro

2020 ◽  
pp. 661-673
Author(s):  
T Jambor ◽  
J Arvay ◽  
E Ivanisova ◽  
E Tvrda ◽  
A Kovacik ◽  
...  

The aim of our study was to reveal the in vitro effects of Salvia officinalis L. (37.5, 75, 150, 200, 250, 300 and 600 µg/ml) extract on the TM3 Leydig cell viability, membrane integrity, steroidogenesis and reactive oxygen species production after 24 h and 48 h cultivation. For the present study, the extract prepared from Salvia officinalis L. leaves was analysed by high performance liquid chromatography (HPLC) for selected flavonoids and phenolic acids followed by a determination of its free radicals scavenging activity (DPPH). Furthermore, Leydig cell viability was assessed by the mitochondrial toxicity assay (MTT), while the membrane integrity was evaluated by 5- carboxyfluorescein diacetate-acetoxymethyl ester (5-CFDA-AM). The level of steroid hormones was performed by enzyme-linked immunosorbent assay (ELISA) from the culture media, while the superoxide radical generation was measured by the nitroblue tetrazolium chloride (NBT) assay. The results show that experimental concentrations did not damage the cell membrane integrity and viability when present at below 300 µg/ml, it was only at 600 µg/ml that a significant (P<0.05) cell viability decline was observed after a 48 h cultivation. A significant (P<0.05) stimulation of testosterone secretion was recorded at 250 µg/ml for 24 h, while the prolonged cultivation time significantly (P<0.05) increased the testosterone and progesterone production at 150, 200, 250 and 300 µg/ml. Furthermore, none of the selected doses exhibited significant ROS-promoting effects however, the highest dose of Salvia initiated the free radical scavenging activity in cultured mice Leydig cells.

Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 153 ◽  
Author(s):  
Xiao-Meng Hu ◽  
Yu-Mei Wang ◽  
Yu-Qin Zhao ◽  
Chang-Feng Chi ◽  
Bin Wang

In the work, defatted muscle proteins of monkfish (Lophius litulon) were separately hydrolyzed by pepsin, trypsin, and in vitro gastrointestinal (GI) digestion methods, and antioxidant peptides were isolated from proteins hydrolysate of monkfish muscle using ultrafiltration and chromatography processes. The antioxidant activities of isolated peptides were evaluated using radical scavenging and lipid peroxidation assays and H2O2-induced model of HepG2 cells. In which, the cell viability, reactive oxygen species (ROS) content, and antioxidant enzymes and malondialdehyde (MDA) levels were measured for evaluating the protective extent on HepG2 cells damaged by H2O2. The results indicated that the hydrolysate (MPTH) prepared using in vitro GI digestion method showed the highest degree of hydrolysis (27.24 ± 1.57%) and scavenging activity on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (44.54 ± 3.12%) and hydroxyl radical (41.32 ± 2.73%) at the concentration of 5 mg protein/mL among the three hydrolysates. Subsequently, thirteen antioxidant peptides (MMP-1 to MMP-13) were isolated from MPTH. According to their DPPH radical and hydroxyl radical scavenging activity, three peptides with the highest antioxidant activity were selected and identified as EDIVCW (MMP-4), MEPVW (MMP-7), and YWDAW (MMP-12) with molecular weights of 763.82, 660.75, and 739.75 Da, respectively. EDIVCW, MEPVW, and YWDAW showed high scavenging activities on DPPH radical (EC50 0.39, 0.62, and 0.51 mg/mL, respectively), hydroxyl radical (EC50 0.61, 0.38, and 0.32 mg/mL, respectively), and superoxide anion radical (EC50 0.76, 0.94, 0.48 mg/mL, respectively). EDIVCW and YWDAW showed equivalent inhibiting ability on lipid peroxidation with glutathione in the linoleic acid model system. Moreover, EDIVCW, MEPVW, and YWDAW had no cytotoxicity to HepG2 cells at the concentration of 100.0 µM and could concentration-dependently protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These present results indicated that the protein hydrolysate and isolated antioxidant peptides from monkfish muscle, especially YWDAW could serve as powerful antioxidants applied in the treatment of some liver diseases and healthcare products associated with oxidative stress.


Author(s):  
Archana V ◽  
Indumathy R

Objective: The aim of this study is to evaluate the protective effect of Delonix elata (L.) leaf extract against doxorubicin-induced cardiotoxicity in H9c2 cells. Methods: Doxorubicin has been used to treat cancer, but its clinical uses are limited because of its dose-dependent cardiotoxicity. Reactive oxygen species play an important role in the pathological process of cardiotoxicity. The various extracts (pet.ether, ethyl acetate and ethanol) of Delonix elata leaves antioxidant property was evaluated by SOD antioxidant assay and DPPH free radical scavenging assay. The cells were incubated with different concentrations of various extracts of Delonix elata leaves for 2 hr, followed by incubation with 5µM doxorubicin for 24 hr. Cell viability was determined by using MTT assay, respectively. Results: The various extracts of Delonix elata leaves exhibits antioxidant activity. The Doxorubicin significantly decreased cell viability which was accompanied by an increased ROS production. Pre-treatment with various extracts of Delonix elata leaves increased the viability ofcells and inhibit the generation of reactive oxygen species. Conclusion: In this study, findings how that Delonix elata leaf extract exhibited a protective effect against oxidative stress-induced cardiomyocyte damage. The ethanolic extract of Delonix elata leaves possesses significant antioxidant and cardioprotective activity.


Luminescence ◽  
2007 ◽  
Vol 22 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Irena Kruk ◽  
Hassan Y. Aboul-Enein ◽  
Teresa Michalska ◽  
Krzysztof Lichszteld ◽  
Katarzyna Kubasik-Kladna ◽  
...  

2017 ◽  
Vol 33 (8) ◽  
pp. 636-645 ◽  
Author(s):  
Yasemin Aydin ◽  
Melike Erkan

Polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental contaminants that disrupt endocrine function in biological systems, especially in the male reproductive system. Previous studies on the reproductive toxicity of PCBs have focused on the impairment of spermatogenesis, disruption of steroidogenesis, decreased sperm number, and infertility. Aroclor 1242 is a commercial mixture with an average of 42% chlorine by weight. The purpose of the present study was to elucidate the hazardous effects of Aroclor 1242 on Leydig cells through an evaluation of cell viability, lipid peroxidation, hydroxyl radicals, H2O2 production, antioxidant enzymes, and steroidogenic enzymes. Leydig cells were exposed to Aroclor 1242 for 24 h under basal and luteinizing hormone-stimulated conditions at different concentrations (ranging from 10−16 M to 10−6 M). After incubation, Leydig cells were measured for cell viability, lipid peroxidation, reactive oxygen species (hydroxyl radical and H2O2), antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase), and steroidogenic enzymes (3β-hydroxysteroid dehydrogenase [HSD] and 17β-HSD). The results showed that cell viability was reduced only at Aroclor 1242 concentrations of 10−6 M and 10−8 M, whereas lipid peroxidation and reactive oxygen species increased relative to the concentration. Furthermore, antioxidant systems and steroidogenesis were interrupted to varying degrees, relative to the concentration. These findings suggest that exposure to Aroclor 1242 at high concentrations may result in detrimental effects to Leydig cell homeostasis. In addition, Aroclor 1242 may impair steroidogenesis, especially testosterone biosynthesis, by inhibiting two important steroidogenic enzymes.


2021 ◽  
pp. 615-625
Author(s):  
Tomas Jambor ◽  
Julius Arvay ◽  
Eva Tvrda ◽  
Anton Kovacik ◽  
Hana Greifova ◽  
...  

Several plants have the potential to protect essential reproductive processes such as spermatogenesis or steroidogenesis, however, effective concentrations and main mechanisms of action are still unknown. This in vitro study was aimed to assess the effects of Apium graveolens L., Levisticum officinale, and Calendula officinalis L. extracts on the structural integrity, functional activity and gap junctional intercellular communication (GJIC) in mice Leydig cells. TM3 cells were grown in the presence of experimental extracts (37.5, 75, 150 and 300 µg/ml) for 24 h. For the present study, high-performance liquid chromatography analysis was used to quantify flavonoids or phenolic acids. Subsequently, Leydig cell viability was assessed by alamarBlue assay, while the cell membrane integrity was detected by 5 carboxyfluorescein diacetate-acetoxymethyl ester. The level of steroid hormones production was determined by enzyme-linked immunosorbent assay. Additionally, GJIC was assessed by scalpel loading/dye transfer assay. According to our results, Apium graveolens L. significantly increased the viability and cell membrane integrity at 75 µg/ml (109.0±4.3 %) followed by a decline at 300 µg/ml (89.4±2.3 %). In case of Levisticum officinale and Calendula officinalis L. was observed significant decrease at 150 µg/ml (88.8±11.66 %, 87.4±6.0 %) and 300 µg/ml (86.2±9.3 %, 84.1±4.6 %). Furthermore, Apium graveolens L. significantly increased the progesterone and testosterone production (75 and 150 µg/ml) however, Levisticum officinale and Calendula officinalis L. significantly reduced steroid hormones synthesis at 150 and 300 µg/ml. Finally, the disturbance of GJIC was significantly affected at 300 µg/ml of Levisticum officinale (82.5±7.7 %) and Calendula officinalis L. (79.8±7.0 %). The balanced concentration ratio may support the Leydig cell function, steroidogenesis as well as all essential parameters that may significantly improve reproductive functions.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Teppei Shibata ◽  
Shinsuke Shibata ◽  
Naoko Shibata ◽  
Etsuko Kiyokawa ◽  
Hiroshi Sasaki ◽  
...  

Purpose.This study investigated the effects of oral propolis on the progression of galactose-induced sugar cataracts in rats and thein vitroeffects of propolis on high-glucose-induced reactive oxygen species (ROS) and cell death in cultured rat lens cells (RLECs).Methods. Galactose-fed rats and RLECs cultured in high glucose (55 mM) medium were treated with propolis or vehicle control. Relative lens opacity was assessed by densitometry and changes in lens morphology by histochemical analysis. Intracellular ROS levels and cell viability were measured.Results. Oral administration of propolis significantly inhibited the onset and progression of cataract in 15% and 25% of galactose-fed rats, respectively. RLECs cultured with high glucose showed a significant increase in ROS expression with reduced cell viability. Treatment of these RLECs with 5 and 50 μg/mL propolis cultured significantly reduced ROS levels and increased cell viability, indicating that the antioxidant activity of propolis protected cells against ROS-induced damage.Conclusion. Propolis significantly inhibited the onset and progression of sugar cataract in rats and mitigated high-glucose-induced ROS production and cell death. These effects may be associated with the ability of propolis to inhibit hyperglycemia-evoked oxidative or osmotic stress-induced cellular insults.


2020 ◽  
Vol 15 (3) ◽  
pp. 1934578X2091147
Author(s):  
Na Li ◽  
Dongdong Xin ◽  
Hongbo Li ◽  
Yanyan Zhao ◽  
Wei Zhou ◽  
...  

Fluoride is an essential trace element, but its beneficial range is narrow, and excess fluoride may have negative health effects. The objective of this study was to investigate the potential cytoprotective effects of epigallocatechin-3-gallate (EGCG) in cultured neuro-2a neuroblastoma cells exposed to sodium fluoride (NaF)-induced oxidative stress. Isolated Neuro-2a cells were exposed to increasing concentrations of NaF (0, 1, 2, 4, 6, and 8 mM) for 24 hours to induce oxidative stress. Moreover, to determine the concentration of EGCG necessary for protective effects, we exposed isolated Neuro-2a cells to increasing concentrations of EGCG (0, 0.5, 1, 5, 10, 20, 40, 60, 80, and 100 μg/mL) for 24 and 48 hours. Pretreatment with EGCG at various doses (0, 0.5, 1, 5, 10, 20, and 40 μg/mL) was evaluated in Neuro-2a cells for 24 hours, followed by an NaF (4 mM per culture well) challenge for 24 hours. As shown in this study, EGCG can protect Neuro-2a cells from NaF-induced apoptosis. This effect may be due to the reactive oxygen species scavenging activity of EGCC.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5567-5567
Author(s):  
Karin Melanie Rohrer ◽  
Gernot Bruchelt ◽  
Rupert Handgretinger ◽  
Ursula Holzer

Abstract Neuroblastoma is the most common solid cancer in childhood with high relapse and mortality rates. Furthermore, high risk neuroblastoma is often accompanied by an infaust prognosis. The 5-nitrofuran nifurtimox, usually used in the treatment of Chagas disease, showed cytotoxic effects against neuroblastoma in vitro and in experimental therapy, which is presumably due to the formation of oxidative stress. Inducing oxidative stress is a well investigated and suitable strategy in the treatment of malignant diseases in vitro but often encounters difficulties in clinical administration. Thus, nifurtimox as a well-established drug represents a promising new approach in treating neuroblastoma. Combining the induction of reactive oxygen species by application of nifurtimox with a blockade of the cells’ own stress response might even increase the cytotoxic effects. The chaperones heat shock protein 70 and 90 (Hsp70/Hsp90) are responsible for refolding or degrading damaged proteins, especially after stress situations such as heat or oxidative stress. Therefore, the roles of Hsp70 and Hsp90 were investigated in more detail. The commercially available human neuroblastoma cell lines IMR-32, LA-N-1 and the cell line LS, which has been established in the children’s hospital Tuebingen, were exposed to increasing doses of nifurtimox (0.070 mM to 0.348 mM) and incubated for 1, 2 or 3 days. It could be observed that cell viability of all cell lines was significantly and dose-dependently reduced (p<0.01) after nifurtimox treatment. An average reduction of cell viability by 50% was achieved after 24h incubation with 0.348 mM nifurtimox (LS and IMR-32). The assumption that nifurtimox induces the formation of reactive oxygen species could be confirmed. The amount of intracellular reactive oxygen species was significantly increased (p<0.05) in a dose-dependent manner in all cell lines after 24h. Furthermore, expression levels of heat shock proteins Hsp70 and Hsp90 were investigated. Western blot analysis revealed increased intracellular expression levels for both heat shock proteins after 24h nifurtimox treatment. Concluding that Hsp70 and Hsp90 have important roles in tumor cell survival, it was decided to specifically inhibit Hsp90. For this purpose, the neuroblastoma cell lines were treated with the geldanamycin analog 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). After inhibition of Hsp90 cells were additionally incubated with the previously used dosages of nifurtimox. A significant higher reduction of the cell viability (p<0.001) could be observed for all neuroblastoma cell lines compared to the application of nifurtimox or 17-DMAG alone. In conclusion, nifurtimox increases oxidative stress in neuroblastoma cell lines leading to significantly decreased cell viability. The specific inhibition of Hsp90 additionally intensifies this effect. The findings suggest that the combined administration of nifurtimox and the specific Hsp90 inhibitor 17-DMAG leads to a synergistic and favorable effect in the treatment of neuroblastoma. More importantly, being an approved medication and well investigated in a wide variety of clinical trials, nifurtimox and 17-DMAG are easy accessible and create a promising new approach not only in neuroblastoma treatment. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document