scholarly journals Soil aluminium toxicity in New Zealand pastoral farming – a review

2018 ◽  
pp. 129-136
Author(s):  
Jeff D Morton ◽  
Jim L Moir

As most New Zealand pastoral soils are acidic, aluminium (Al) can be present at high concentrations and restrict plant root growth and shoot yield. In field trials, Al toxicity in white clover has been associated with CaCl2-extractable soil Al levels of 3-5 ppm or exchangeable soil KCl-extractable levels of 1-2 me/100g, when soil pH levels were below 5.5-5.7 in the top 75 mm. Lucerne is less tolerant of Al toxicity than white clover and ryegrass, which in turn are less tolerant than Lotus spp., arrow leaf, subterranean, Caucasian, Persian and gland clovers, and naturalised adventive annuals such as cluster, haresfoot, striated and suckling clovers. Soil Al toxicity generally increases with soil depth. Soil pH is a reliable indicator of soil Al and, on average, can be increased by 0.1 units/tonne/ha of applied lime to reduce soil Al to below the toxic range. Lime application is the most effective strategy where it can be ground-applied. A key limitation of ground-applied lime to reduce Al toxicity is that its movement down the soil only occurs slowly except in high rainfall areas. Soil Al and pH levels and legume content in hill soils varies according to slope and aspect and there is an opportunity to differentially apply lime by air to areas with low soil pH and more legume, for the best economic return.

1990 ◽  
Vol 30 (2) ◽  
pp. 297 ◽  
Author(s):  
NS Bolan ◽  
RE White ◽  
MJ Hedley

Field trials in New Zealand have shown that reactive phosphate rocks (RPRs) can be as effective as soluble P fertilisers, per kg of P applied, on permanent pastures that have a soil pH<6.0 (in water) and a mean annual rainfall >800 mm. Whereas RPRs such as North Carolina, Sechura, Gafsa and Chatham Rise have been evaluated on permanent pastures in New Zealand, most Australian field trials have examined unreactive PRs such as Christmas Island A and C grade, Nauru and Duchess, using annual plant species. Only in recent experiments has an RPR, North Carolina, been examined. Except on the highly leached sands in southern and south-western Australia, both reactive and unreactive PRs have shown a low effectiveness relative to superphosphate. In addition to chemical reactivity, other factors may contribute to the difference in the observed agronomic effectiveness of PRs in Australia and New Zealand. Generally, PRs have been evaluated on soils of lower pH, higher pH buffering capacity (as measured by titratable acidity) and higher P status in New Zealand than in Australia. Rainfall is more evenly distributed throughout the year on New Zealand pastures than in Australia where the soil surface dries out between rainfall events. Dry conditions reduce the rate at which soil acid diffuses to a PR granule and dissolution products diffuse away. Even when pH and soil moisture are favourable, the release of P from PR is slow and more suited to permanent pasture (i.e. the conditions usually used to evaluate PRs in New Zealand) than to the annual pastures or crops used in most Australian trials. Based on the criteria of soil pH<6.0 and mean annual rainfall >800 mm, it is estimated that the potentially suitable area for RPRs on pasture in New Zealand is about 8 million ha. Extending this analysis to Australia, but excluding the seasonal rainfall areas of northern and south-western Australia, the potentially suitable area is about 13 million ha. In New Zealand, many of the soils in the North and South Islands satisfy both the pH and rainfall criteria. However, suitable areas in Australia are confined mainly to the coastal and tableland areas of New South Wales and eastern Victoria, and within these areas the actual effectiveness of RPR will depend markedly on soil management and the distribution of annual rainfall. Further research on RPR use should be focused on these areas.


2017 ◽  
Vol 44 (10) ◽  
pp. 961 ◽  
Author(s):  
Jiarong Zhang ◽  
Bingjie Zeng ◽  
Yawen Mao ◽  
Xiangying Kong ◽  
Xinxun Wang ◽  
...  

Aluminium (Al) toxicity is a major chemical constraint limiting plant growth and production on acidic soils. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule that plays crucial roles in plant growth and stress tolerance. However, there is no knowledge regarding whether melatonin is involved in plant responses to Al stress. Here, we show that optimal concentrations of melatonin could effectively ameliorate Al-induced phytotoxicity in soybean (Glycine max L.). The concentration of melatonin in roots was significantly increased by the 50 μM Al treatment. Such an increase in endogenous melatonin coincided with the upregulation of the gene encoding acetyltransferase NSI-like (nuclear shuttle protein-interacting) in soybean roots. Supplementation with low concentrations of melatonin (0.1 and 1 μM) conferred Al resistance as evident in partial alleviation of root growth inhibition and decreased H2O2 production: in contrast, high concentrations of melatonin (100 and 200 μM) had an opposite effect and even decreased root growth in Al-exposed seedlings. Mitigation of Al stress by the 1 μM melatonin root treatment was associated with enhanced activities of the antioxidant enzymes and increased exudation of malate and citrate. In conclusion, melatonin might play a critical role in soybean resistance to Al toxicity.


Soil Research ◽  
1991 ◽  
Vol 29 (3) ◽  
pp. 415 ◽  
Author(s):  
JA Adams ◽  
Z Hamzah ◽  
RS Swift

Amounts of soil boron extracted from six Canterbury, New Zealand soils by hot water (HWS), hot 0.02 M CaCl2, 0.01 M CaCl2 + 0.05 M mannitol, and a boron specific resin were significantly (P < 0.01) correlated with each other. The soils are all formed from greywacke alluvium and/or loess but cover a range of organic matter and clay contents. Hot water and hot 0.02 M CaCl2 yielded higher levels of extractable boron than did 0.01 M CaCl2 + 0.05 M mannitol and the resin. Amounts of boron extracted by all four reagents were significantly correlated with soil organic carbon contents (and to a lesser extent clay contents), but not with soil pH. Dry matter yield and boron uptake by radishes (Raphanussativus L.) over two harvests increased with increasing extractable soil boron for all four extractants showing that all were suitable for assessing the boron available to radishes. Decreased yields occurred in soils with HWS or hot 0.02 M CaCl2 extractable boron levels less than 1.1 �g g-1 and were associated with a progressively lower allocation of dry matter to roots. For analytical purposes, the hot 0.02 M CaCl2 reagent provided the most convenient measure of available soil boron.


2016 ◽  
Vol 16 ◽  
pp. 169-172
Author(s):  
A.E. Whitley ◽  
J.L. Moir ◽  
P.C. Almond ◽  
D.J. Moot

Soil acidity and associated aluminium (Al) toxicity severely limit the establishment and growth of legumes in New Zealand high country pastures. A survey of 13 soils differing in location, soil order, parent material and climate, showed soil pH to range from 4.9 to 6.4 and exchangeable Al (0.02M CaCl2) concentrations of


1970 ◽  
Vol 21 (5) ◽  
pp. 677 ◽  
Author(s):  
KR Helyar ◽  
AJ Anderson

The growth responses of Lolium pevenne L. cv. Clunes, Phalavis tubevosa L. cv. Australian Commercial, Trifolium subterraneurn L. cv. Mount Barker, Trifolium vepens L. cv. Victorian, and Medicago sativa L. cv. Hunter River to lime, superphosphate, and nitrogen were compared in a field experiment on a soil with a pH of 4.9-5.4 (115 soil/water ratio) and with the cation exchange capacity 25-50% saturated by aluminium. The soil had a high phosphorus requirement. The effects of superphosphate and lime on the sodium bicarbonate extractable phosphorus levels and on the soil pH are discussed. Lucerne was one of the least productive species at most harvests. It required more superphosphate than subterranean clover, perennial ryegrass, or white clover to attain any given percentage of maximum yield. The visual symptoms of the plants and the yield interactions showed little evidence of effects of high aluminium, which indicated that the superphosphate was needed to correct phosphorus deficiency rather than to counteract any aluminium toxicity. The initial soil pH was somewhat higher than the levels previously found to be associated with aluminium toxicity on the soil in pots. Phalaris growth was increased to the highest superphosphate level, but growth at lower levels improved with time. Subterranean clover growth was depressed by the highest superphosphate level early in the season. The other species were not affected in this way. More lime was needed for lucerne than for white clover, which in turn needed more lime than subterranean clover. Nitrogen decreased the response of clover to lime, and the evidence indicates that the response of the legumes to lime was due mainly to the effect of lime in improving nodulation and nitrogen fixation. The lime-treated subterranean clover responded to nitrogen, especially in the first few months after sowing. The grasses responded markedly to nitrogen, while lime had a small effect on their growth and response to nitrogen. In no case did lime decrease the requirement for superphosphate.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 113 ◽  
Author(s):  
A. E. Whitley ◽  
J. L. Moir ◽  
P. C. Almond

Soil acidification and associated aluminium toxicity are critical issues in New Zealand, particularly in high and hill country areas. However, there have been few studies that have examined the key drivers of exchangeable Al concentrations in New Zealand soils. The National Soils Database was used to investigate the relationship between soil chemical, physical and environmental variables and KCl-extractable Al (AlKCl) for New Zealand soils. Soil AlKCl concentrations were strongly associated with base saturation, soil pH, cation exchange capacity, total N, total C and soil order. However, the relationships differed among the three depth zones (0–20cm, 20–50cm and 50–120cm). Soil acidity and high cation exchange capacity contributed to high concentrations of AlKCl in the soil, whereas high base saturation and total C had the opposite effect. Total N decreased with increasing AlKCl in the topsoil (0–20cm), which is likely a response to the effects of Al toxicity on biological N fixation by pasture legumes. Across a pHH2O range of 3.8–6.4, AlKCl was measured at concentrations that can be toxic to sensitive plants (&gt;1.0 cmolc kg−1). Brown Soils and Podzols are likely more susceptible to Al toxicity, with the highest mean concentrations of AlKCl measured across all depth zones.


Author(s):  
B.R. Watkin

AN Aberystwyth selection of tall fescue (Festuca arundinacea Schreb.), known as S170, was sown with certified New Zealand white clover (Trifolium repens) and re' clover (T. pratense) and compared under sheep grazing with other grass/clover pastures at the Grasslands Division Regional Station at Lincoln (Watkin, 1975) .


Author(s):  
R.W. Hofmann ◽  
B.D. Campbell ◽  
E.E. Swinny ◽  
S.J. Bloor ◽  
K.R. Markham ◽  
...  

During summertime in New Zealand, white clover experiences high levels of ultraviolet-B (UV-B) radiation. This frequently coincides with periods of summer drought. We investigated responses to UV-B and to the combination of UV-B and drought in various white clover populations, including New Zealand cultivars and ecotypes as well as overseas germplasm. The results were obtained under controlled environmental conditions in three independent trials. Overall, white clover growth was reduced by UV-B. The population comparisons indicated that low growth rate and adaptation to other forms of stress may be related to UV-B tolerance under well-watered conditions, but not during extended periods of drought. Flavonoid pigments that are involved in stress protection were strongly increased under UV-B and were further enhanced in the combination of UV-B and drought. The responses among these flavonoids were highly specific, with more pronounced UV-B-induced increases in quercetin glycosides, compared to their closely related kaempferol counterparts. UV-B toler ance of the less productive white clover populations was linked to the accumulation of quercetin compounds. In conclusion, these studies suggest (i) that slow-growing white clover ecotypes adapted to other stresses have higher capacity for biochemical acclimation to UV-B under well-watered conditions and (ii) that these biochemical attributes may also contribute to decreased UV-B sensitivity across white clover populations under drought. The findings alert plant breeders to potential benefits of selecting productive germplasm for high levels of specific flavonoids to balance trade-offs between plant productivity and stress tolerance. Keywords: Drought, flavonoids, genetic variation, HPLC, kaempferol, quercetin, str ess, Trifolium repens L., ultraviolet-B, white clover


Author(s):  
W.M. Williams ◽  
L.B. Anderson ◽  
B.M. Cooper

In evaluations of clover performances on summer-dry Himatangi sandy soil, it was found that none could match lucerne over summer. Emphasis was therefore placed on production in autumn-winter- early spring when lucerne growth was slow. Evaluations of some winter annual clover species suggested that Trifolium spumosum, T. pallidum, T. resupinatum, and T. vesiculosum would justify further investigation, along with T. subterraneum which is already used in pastures on this soil type. Among the perennial clover species, Kenya white clover (7'. semipilosum) showed outstanding recovery from drought and was the only species to produce significantly in autumn. However, it failed to grow in winter-early spring. Within red clover, materials of New Zealand x Moroccan origin substantially outproduced the commercial cultivars. Within white clover, material from Israel, Italy and Lebanon, as well as progeny of a selected New Zealand plant, showed more rapid recovery from drought stress and subsequently better winter growth than New Zealand commercial material ('Grasslands Huia'). The wider use of plant material of Mediterranean origin and of plants collected in New Zealand dryland pastures is advocated in development of clover cultivars for New Zealand dryland situations.


1994 ◽  
Vol 122 (1) ◽  
pp. 91-105 ◽  
Author(s):  
M. L. Nguyen ◽  
K. M. Goh

SUMMARYA field plot experiment of 271 days duration was conducted on New Zealand irrigated pastures, commencing in the summer (January) 1988, on a Templeton silt loam soil (Udic Ustochrept) by applying 35sulphur (35S)-labelled urine (250 μCi/g S with 1300 μg S/ml) to field plots (600 × 600 mm) at a rate equivalent to that normally occurring in sheep urine patches (150 ml/0·03 m2) to investigate the distribution, transformations and recovery of urinary S in pasture soil–plant systems and sources of plant-available soil S as influenced by the available soil moisture at the time of urine application and varying amounts of applied irrigation water. Results obtained showed that c. 55–90% of 35S-labelled urine was incorporated into soil sulphate (SO42−), ester SO42− and carbon (C)-bonded S fractions within the major plant rooting zone (0–300 mm), as early as 27 days after urine application. Hydriodic acid (Hl)-reducible and C-bonded soil S fractions showed no consistent trend of incorporation. On day 271, labelled-S was found in soil SO42−, Hl-reducible S and C-bonded S fractions to a soil depth of 500 mm, indicating that not only SO42− but also organic S fractions from soils and 35S-labelled urine were leached beyond the major rooting zone. A large proportion (c. 59–75%) of 35S-labelled urine was not recovered in pasture soil–plant systems over a 271-day period, presumably due to leaching losses beyond the 0–300 mm soil depth. This estimated leaching loss was comparable to that (75%) predicted using the S model developed by the New Zealand Ministry of Agriculture. The recovery of urinary S in soil–plant systems over a 271-day period was not affected by different amounts of irrigation water applied 7 days after urine application to soil at either 50 or 75% available water holding capacity (AWHC). However, significantly lower S recovery occurred when urinary S was applied to the soil at 25% AWHC than at field capacity, suggesting that urinary S applied at field capacity might not have sufficient time to be adsorbed by soil particles, enter soil micropores or be immobilized by soil micro-organisms. Both soil ester SO42− and calcium phosphate-extractable soil S in urine-treated soils were found to be major S sources for pasture S uptake. Labelled S from 35S-labelled urine accounted for c. 12–47% of total S in pasture herbage.


Sign in / Sign up

Export Citation Format

Share Document