scholarly journals INTERACTION OF CIS-Pd(NH3)2Cl2 WITH DIPHOSPHONIC ACIDS IN SOLUTIONS AT PHYSIOLOGICAL CHLORIDE-IONS CONCENTRATION

2019 ◽  
Vol 85 (11) ◽  
pp. 3-14
Author(s):  
Oleksandra Kozachkova ◽  
Nataliia Tsaryk ◽  
Vasyl Pekhnyo

The complex formation of cis-Pd(NH3)2Cl2 with 1-hydroxyethylidene-1,1-diphosphonic (HEDP, H4L1), 3-amino-1-hydroxypropylidene-1,1-diphosphonic (AHPrDP, H4L2), and 1-aminopropylidene-1,1-diphosphonic (APrDP, H4L3) acids in aqueous solutions with the concentration CKCl=0.15 mol/L, which corresponds to the concentration of chloride ions in the intercellular fluid, has been studied by spectrophotometry and pH potentiometry. The results of studying the interaction between cis-Pd(NH3)2Cl2 and diphosphonic acids have been interpreted taking into account the equilibrium concentration distribution of complexes forming in Pd(NH3)2Cl2 solutions at a chloride ion concentration of 0.15 mol/L. It has been found that when Pd(NH3)2Cl2 is dissolved in 0.15 mol/L KCl, ammonia molecules are substituted by chloride ions and a water molecule in the pH range of 2 – 4 to form chloro-aqua complexes [PdCl4]2- and [PdCl3(H2O)]-. In the case of complex formation of Pd(II) chloro-aqua complexes with HEDP and AHPrDP, complexes with [Pd 2OPO3 2Cl] chromophore with bidentate coordination of ligands by two oxygen atoms of phosphonic groups are formed in the acidic pH range. At pH>5, a [Pd(L1)(NH3)2]2- complex (lgβ=30.55(5)) is formed in the cis-Pd(NH3)2Cl2:HEDP=1:1 system, and at pH>6, a [Pd(HL2)(NH3)2]- complex (lgβ=40.29(2)) is formed in the cis-Pd(NH3)2Cl2:AHPrDP=1:1 system. The formation of complexes with [Pd 2OPO3 2Namine] chromophore takes place with the displacement of chloride ions from the coordination sphere of complexes with [Pd 2OPO3 2Cl] chromophore by ammonia molecules. In the system cis-Pd(NH3)2Cl2:APrDP=1:1, the ligand is coordinated to Pd(II) in a bidentate fashion by the nitrogen atoms of the amine group and oxygen atoms of the phosphonic group to form a [Pd(H2L3)Cl2]2- complex with [Pd Namine OPO3 2Cl] chromophore in the acidic pH range. When pH is increased to 5 and then to 7, a sequential substitution of chloride ions by ammonia molecules takes place to form a [Pd(HL3)(NH3)Cl]2- complex (lgβ=38,84(4)) with [Pd 2Namine OPO3 Cl] chromophore and a [Pd(HL3)(NH3)2]- complex (lgβ=43,14(2)) and [Pd(L3)(NH3)2]2- complex (lgβ=34.91(2)) with [Pd 3Namine OPO3] chromophore.

1980 ◽  
Vol 43 (331) ◽  
pp. 901-904 ◽  
Author(s):  
D. Alun Humphreys ◽  
John H. Thomas ◽  
Peter A. Williams ◽  
Robert F. Symes

SummaryThe chemical stabilities of mendipite, Pb3O2Cl2, diaboleïte, Pb2CuCl2(OH)4, chloroxiphite, Pb3CuCl2O2(OH)2, and cumengéite, Pb19Cu24Cl42 (OH)44, have been determined in aqueous solution at 298.2 K. Values of standard Gibbs free energy of formation, ΔGf°, for the four minerals are −740, −1160, −1129, and −15163±20 kJ mol−1 respectively. These values have been used to construct the stability diagram shown in fig. I which illustrates their relationships to each other and to the minerals cotunnite, PbCl2, paralaurionite, PbOHCl, and litharge, PbO. This diagram shows that mendipite occupies a large stability field and should readily form from cold, aqueous, mineralizing solutions containing variable amounts of lead and chloride ions, and over a broad pH range. The formation of paralaurionite and of cotunnite requires a considerable increase in chloride ion concentration, although paralaurionite can crystallize under much less extreme conditions than cotunnite. The encroachment of the copper minerals on to the stability fields of those mineral phases containing lead(II) only is significant even at very low relative activities of cupric ion. Chloroxiphite has a large stability field, and at given concentrations of cupric ion, diaboleïte is stable at relatively high aCl−. Cumengéite will only form at high concentrations of chloride ion.


2009 ◽  
Vol 7 (3) ◽  
pp. 388-394 ◽  
Author(s):  
Ratanasuda Waranyoupalin ◽  
Sumpun Wongnawa ◽  
Malinee Wongnawa ◽  
Chaveng Pakawatchai ◽  
Pharkphoom Panichayupakaranant ◽  
...  

AbstractComplex formation between curcumin and Hg(II) ion MeOH/H2O (1: 1 v/v) was investigated and monitored by the spectrophotometric method. The absorption peak of unreacted curcumin which was close and overlapped with that of the complex, was removed by calculation using Microsoft Excel, thereby, allowing determination of the stoichiometry of the complex by the mole-ratio and the Job’s continuous variation methods. Both methods indicated that a 1:1 complex of curcumin and Hg(II) was formed in solution. The formation constant of the 1:1 Hg(II) complex was obtained from two methods, the equilibrium concentration calculation and the linear plot of Benesi-Hildebrand equation, as log K = 4.44 ± 0.16 and 4.83 ± 0.02, respectively. The structure is proposed as a tetrahedral complex of Hg(II) with one curcumin and two chloride ions as ligands.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrian Radoń ◽  
Dariusz Łukowiec ◽  
Patryk Włodarczyk

AbstractThe dielectric properties and electrical conduction mechanism of bismuth oxychloride (BiOCl) plates synthesized using chloramine-T as the chloride ion source were investigated. Thermally-activated structure rebuilding was monitored using broadband dielectric spectroscopy, which showed that the onset temperature of this process was 283 K. This rebuilding was related to the introduction of free chloride ions into [Bi2O2]2+ layers and their growth, which increased the intensity of the (101) diffraction peak. The electrical conductivity and dielectric permittivity were related to the movement of chloride ions between plates (in the low-frequency region), the interplanar motion of Cl− ions at higher frequencies, vibrations of these ions, and charge carrier hopping at frequencies above 10 kHz. The influence of the free chloride ion concentration on the electrical conductivity was also described. Structure rebuilding was associated with a lower concentration of free chloride ions, which significantly decreased the conductivity. According to the analysis, the BiOCl plate conductivity was related to the movement of Cl− ions, not electrons.


1965 ◽  
Vol 18 (5) ◽  
pp. 651 ◽  
Author(s):  
RW Green ◽  
PW Alexander

The Schiff base, N-n-butylsalicylideneimine, extracts more than 99.8% beryllium into toluene from dilute aqueous solution. The distribution of beryllium has been studied in the pH range 5-13 and is discussed in terms of the several complex equilibria in aqueous solution. The stability constants of the complexes formed between beryllium and the Schiff base are log β1 11.1 and log β2 20.4, and the distribution coefficient of the bis complex is 550. Over most of the pH range, hydrolysis of the Be2+ ion competes with complex formation and provides a means of measuring the hydrolysis constants. They are for the reactions: Be(H2O)42+ ↔ 2H+ + Be(H2O)2(OH)2, log*β2 - 13.65; Be(H2O)42+ ↔ 3H+ + Be(H2O)(OH)3-, log*β3 -24.11.


2004 ◽  
Vol 55 (8) ◽  
pp. 635-640 ◽  
Author(s):  
Kenji Yoshino ◽  
Kentaro Sakai ◽  
Yoko Mizuha ◽  
Ayako Shimizuike ◽  
Shigeru Yamamoto

1988 ◽  
Vol 66 (5) ◽  
pp. 637-642 ◽  
Author(s):  
Timothy J. Blaxter ◽  
Peter L. Carlen

The dendrites of granule cells in hippocampal slices responded to γ-aminobutyric acid (GABA) with a depolarization. The response was blocked by picrotoxin in a noncompetitive manner. Reductions in the extracellular chloride ion concentration changed the reversal potential of the response by an amount predicted from the Nernst equation for chloride ion. Chloride-dependent hyperpolarizing responses were sometimes also found in the cell body of the granule cells. Since the reversal potential followed that predicted from the Nernst equation for chloride, we conclude that the response was mediated by chloride ions alone with no contribution from other ions. This has not previously been shown for the depolarizing response to GABA in central neurons.


2018 ◽  
Vol 6 (11) ◽  
pp. 153-162
Author(s):  
Rajesh V. ◽  
E. U. B. Reddi ◽  
T. Byragi Reddy ◽  
Ch. Durga Prasad ◽  
B. Prasanna Kumar

The present study was initiated with an objective of investigating a plant extract as an effective corrosion inhibitor useful for protection of carbon steel in aqueous environment containing chloride ions. For this purpose, the leaf extract of the plant ‘Aerva lanata’ belonging to Amaranthaceae family of genus Aerva was chosen. The required optimum concentration of the extract for an effective inhibition was found to be 5 %, resulting in the inhibition efficiency of 95 % against corrosion of carbon steel in 200 ppm of NaCl solution. The extract introduced as a corrosion inhibitor was found to be effective in the pH range from 4.0 to 9.0. The extract could retain its inhibition efficiency for about an immersion period of 60 days and also up to a temperature of 333 K. The 5 % extract was found to control corrosion of carbon steel in highly aggressive medium containing 300 ppm of NaCl also. In order to maintain the protective nature, the required concentration of the extract was 2 %. From these studies, it was inferred that the Aerva lanata leaf extract exhibits good inhibitive properties for carbon steel in aqueous environment in wide ranges of pH, temperature and aggressiveness of medium.


1962 ◽  
Vol 40 (2) ◽  
pp. 303-315 ◽  
Author(s):  
R. I. Birks

Nerve cells and their processes in cat sympathetic ganglia and frog skeletal muscle have shown on electron microscopic examination alterations in subcellular morphology as a result of treatment with digoxin. Non-nervous cells were unaffected by the drug. These changes included, in ganglia, swelling of the affected cells, shrinkage of mitochondria with pronounced increase in internal density, swelling of Nissl substance in nerve cell bodies, and loss of structural detail in nerve processes. At the myoneural junction the motor nerve endings were swollen, mitochondria were altered, and the synaptic vesicles were reduced in numbers, those that remained being swollen. These changes were accompanied by invagination of the axon surface by Schwann cell processes.Cell swelling, but not the subcellular changes, was prevented by substitution of sulphate for chloride ions in the extracellular space. When the extracellular sodium ion concentration was reduced to 20 meq/l. the cells were completely protected against digoxin. It is concluded that swelling is caused by net uptake of sodium and chloride as a result of the known inhibitory action of digoxin on sodium extrusion by nerve cells. The possibility that these structural changes in subcellular organelles may be caused by a raised concentration of intracellular sodium ions, such as might occur during activity of excitable cells, is discussed.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1625
Author(s):  
Rekha Singh ◽  
Woohang Kim ◽  
James A. Smith

This study quantifies the effects of chloride ions on silver and copper release from porous ceramic cubes embedded with silver and copper and its effect on E. coli disinfection in drinking water. Log-reduction of E. coli by silver ions decreased after 4 h of contact time as the chloride ion concentration increased from 0 to 250 mg/L but, it was not changed by copper ions under the same conditions. For silver addition by silver-ceramic cubes, log reductions of E. coli decreased sharply from 7.2 to 1.6 after 12 h as the chloride concentration increased from 0 to 250 mg/L. For the silver-ceramic cube experiments, chloride ion also reduced the total silver concentration in solution. After 24 h, total silver concentrations in solution decreased from 61 µg/L to 20 µg/L for corresponding chloride ion concentrations. According to the MINTEQ equilibrium model analysis, the decrease in disinfection ability with silver embedded ceramic cubes could be the result of precipitation of silver ions as silver chloride. This suggests that AgCl was precipitating within the pore space of the ceramic. These results indicate that, although ionic silver is a highly effective disinfectant for E. coli, the presence of chloride ions can significantly reduce disinfection efficacy. For copper-ceramic cubes, log reductions of E. coli by copper embedded cubes increased from 1.2 to 1.5 when chloride ion concentration increased from 0 to 250 mg/L. Total copper concentrations in solution increased from 4 µg/L to 14 µg/L for corresponding chloride ion concentrations. These results point towards the synergistic effect of chloride ions on copper oxidation as an increased concentration of chloride enhances copper release.


Sign in / Sign up

Export Citation Format

Share Document