The Influence of Modern Physics

Author(s):  
Leemon B. McHenry

This chapter investigates the influence of Maxwell’s electromagnetic theory, Einstein’s relativity theory and the early quantum theory on the development of the event ontology in the 1920s with particular focus on Whitehead’s view. These were the three key ideas that led to a transformation of our view of reality as comprised fundamentally of energy events. The two main themes of this chapter include: (1) physical evidence in support of an ontology of events, and (2) the increasing unification of physical theory until we arrive at the current state of two highly successful, unified theories that are presently disunified within the search for a comprehensive, unified theory.

Author(s):  
Leemon B. McHenry

What kinds of things are events? Battles, explosions, accidents, crashes, rock concerts would be typical examples of events and these would be reinforced in the way we speak about the world. Events or actions function linguistically as verbs and adverbs. Philosophers following Aristotle have claimed that events are dependent on substances such as physical objects and persons. But with the advances of modern physics, some philosophers and physicists have argued that events are the basic entities of reality and what we perceive as physical bodies are just very long events spread out in space-time. In other words, everything turns out to be events. This view, no doubt, radically revises our ordinary common sense view of reality, but as our event theorists argue common sense is out of touch with advancing science. In The Event Universe: The Revisionary Metaphysics of Alfred North Whitehead, Leemon McHenry argues that Whitehead's metaphysics provides a more adequate basis for achieving a unification of physical theory than a traditional substance metaphysics. He investigates the influence of Maxwell's electromagnetic field, Einstein's theory of relativity and quantum mechanics on the development of the ontology of events and compares Whitehead’s theory to his contemporaries, C. D. Broad and Bertrand Russell, as well as another key proponent of this theory, W. V. Quine. In this manner, McHenry defends the naturalized and speculative approach to metaphysics as opposed to analytical and linguistic methods that arose in the 20th century.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Mormann

Abstract The main thesis of this paper is that Pap’s The Functional A Priori in Physical Theory and Cassirer’s Determinism and Indeterminism in Modern Physics may be conceived as two kindred accounts of a late Neo-Kantian philosophy of science. They elucidate and clarify each other mutually by elaborating conceptual possibilities and pointing out affinities of neo-Kantian ideas with other currents of 20th century’s philosophy of science, namely, pragmatism, conventionalism, and logical empiricism. Taking into account these facts, it seems not too far fetched to conjecture that under more favorable circumstances Pap could have served as a mediator between the “analytic” and “continental” tradition thereby overcoming the dogmatic dualism of these two philosophical currents that has characterized philosophy in the second half the 20th century.


1992 ◽  
Vol 15 (3) ◽  
pp. 425-437 ◽  
Author(s):  
Allen Newell

AbstractThe book presents the case that cognitive science should turn its attention to developing theories of human cognition that cover the full range of human perceptual, cognitive, and action phenomena. Cognitive science has now produced a massive number of high-quality regularities with many microtheories that reveal important mechanisms. The need for integration is pressing and will continue to increase. Equally important, cognitive science now has the theoretical concepts and tools to support serious attempts at unified theories. The argument is made entirely by presenting an exemplar unified theory of cognition both to show what a real unified theory would be like and to provide convincing evidence that such theories are feasible. The exemplar is SOAR, a cognitive architecture, which is realized as a software system. After a detailed discussion of the architecture and its properties, with its relation to the constraints on cognition in the real world and to existing ideas in cognitive science, SOAR is used as theory for a wide range of cognitive phenomena: immediate responses (stimulus-response compatibility and the Sternberg phenomena); discrete motor skills (transcription typing); memory and learning (episodic memory and the acquisition of skill through practice); problem solving (cryptarithmetic puzzles and syllogistic reasoning); language (sentence verification and taking instructions); and development (transitions in the balance beam task). The treatments vary in depth and adequacy, but they clearly reveal a single, highly specific, operational theory that works over the entire range of human cognition, SOAR is presented as an exemplar unified theory, not as the sole candidate. Cognitive science is not ready yet for a single theory – there must be multiple attempts. But cognitive science must begin to work toward such unified theories.


1973 ◽  
Vol 60 (10) ◽  
pp. 441-446 ◽  
Author(s):  
Victor F. Weisskopf

Metaphysics ◽  
2020 ◽  
pp. 64-68
Author(s):  
M. L Fil’chenkov ◽  
Yu. P Laptev

Quantum theory and relativity theory as well as possible reconciliation have been analyzed from the viewpoint of mathematical models being used in them, experimental affirmation, interpretations and their association with dualistic paradigms.


2016 ◽  
Vol a4 (3) ◽  
pp. 377-399 ◽  
Author(s):  
Felicity A Cowdrey ◽  
Claire Lomax ◽  
James D Gregory ◽  
Philip J Barnard

There is evidence that common processes underlie psychological disorders transdiagnostically. A challenge for the transdiagnostic movement is accounting for such processes theoretically. Theories of psychological disorders are traditionally restricted in scope, often explaining specific aspects of a disorder. The alternative to such ‘micro-theories’ is developing frameworks which explain general human cognition, so called ‘macro-theories’, and applying these systematically to clinical phenomena. Interacting Cognitive Subsystems (ICS) [Teasdale, J.D., & Barnard, P.J. (1993). Affect, cognition and change: Re-modelling depressive thought, Lawrence Erlbaum Associates, Hove] is a macro-theory which aims to explain aspects of information processing. The aim of this review is to examine whether ICS provides a useful platform for understanding common processes which maintain psychological disorders. The core principles of ICS are explained and theoretical papers adopting ICS to explain a particular psychological disorder or symptom are considered. Dysfunctional schematic mental models, reciprocal interactions between emotional and intellectual beliefs, as well as attention and memory processes, are identified as being important to the maintenance of psychological disorders. Concrete examples of how such variables can be translated into novel therapeutic strategies are given. The review concludes that unified theories of cognition and emotion have the potential to drive forward developments in transdiagnostic thinking, research and treatment.


2021 ◽  
pp. 31-92
Author(s):  
Jochen Rau

This chapter explains the approach of ‘operationalism’, which in a physical theory admits only concepts associated with concrete experimental procedures, and lays out its consequences for propositions about measurements, their logical structure, and states. It illustrates these with toy examples where the ability to perform measurements is limited by design. For systems composed of several constituents this chapter introduces the notions of composite and reduced states, statistical independence, and correlations. It examines what it means for multiple systems to be prepared identically, and how this is represented mathematically. The operational requirement that there must be procedures to measure and prepare a state is examined, and the ensuing constraints derived. It is argued that these constraint leave only one alternative to classical probability theory that is consistent, universal, and fully operational, namely, quantum theory.


Author(s):  
Jeremy Butterfield

Over the centuries, the doctrine of determinism has been understood, and assessed, in different ways. Since the seventeenth century, it has been commonly understood as the doctrine that every event has a cause; or as the predictability, in principle, of the entire future. To assess the truth of determinism, so understood, philosophers have often looked to physical science; they have assumed that their current best physical theory is their best guide to the truth of determinism. It seems that most have believed that classical physics, especially Newton’s physics, is deterministic. And in this century, most have believed that quantum theory is indeterministic. Since quantum theory has superseded classical physics, philosophers have typically come to the tentative conclusion that determinism is false. In fact, these impressions are badly misleading. The above formulations of determinism are unsatisfactory. Once we use a better formulation, we see that there is a large gap between the determinism of a given physical theory, and the bolder, vague idea that motivated the traditional formulations: the idea that the world in itself is deterministic. Admittedly, one can make sense of this idea by adopting a sufficiently bold metaphysics; but it cannot be made sense of just by considering determinism for physical theories. As regards physical theories, the traditional impression is again misleading. Which theories are deterministic turns out to be a subtle and complicated matter, with many open questions. But broadly speaking, it turns out that much of classical physics, even much of Newton’s physics, is indeterministic. Furthermore, the alleged indeterminism of quantum theory is very controversial: it enters, if at all, only in quantum theory’s account of measurement processes, an account which remains the most controversial part of the theory.


2020 ◽  
Vol 20 (2) ◽  
pp. 228-242
Author(s):  
Elizabeth Monk-Turner

PurposeThis work examines assumptions of positivism and the traditional scientific method.Design/methodology/approachInsights from quantum mechanics are explored especially as they relate to method, measurement and what is knowable. An argument is made that how social scientists, particularly sociologists, understand the nature of “reality out there” and describe the social world may be challenged by quantum ideas. The benefits of utilized mixed methods, considering quantum insights, cannot be overstated.FindingsIt is the proposition of this work that insights from modern physics alter the understanding of the world “out there.” Wheeler suggested that the most profound implication from modern physics is that “there is no out there” (1982; see also Baggott, 1992). Grappling with how modern physics may alter understanding in the social sciences will be difficult; however, that does not mean the task should not be undertaken (see Goswami, 1993). A starting point for the social sciences may be relinquishing an old mechanistic science that depends on the establishment of an objective, empirically based, verifiable reality. Mechanistic science demands “one true reality – a clear-cut reality on which everyone can agree…. Mechanistic science is by definition reductionistic…it has had to try to reduce complexity to oversimplification and process to statis. This creates an illusionary world…that has little or nothing to do with the complexity of the process of the reality of creation as we know, experience, and participate in it” (Goswami, 1993, pp. 64, 66).Research limitations/implicationsMany physicists have popularized quantum ideas for others interested in contemplating the implications of modern physics. Because of the difficulty in conceiving of quantum ideas, the meaning of the quantum in popular culture is far removed from the parent discipline. Thus, the culture has been shaped by the rhetoric and ideas surrounding the basic quantum mathematical formulas. And, over time, as quantum ideas have come to be part of the popular culture, even the link to the popularized literature in physics is lost. Rather, quantum ideas may be viewed as cultural formations that take on a life of their own.Practical implicationsThe work allows a critique of positivist method and provides insight on how to frame qualitative methodology in a new way.Social implicationsThe work utilizes popularized ideas in quantum theory: the preeminent theory that describes all matter. Little work in sociology utilizes this perspective in understanding research methods.Originality/valueQuantum insights have rarely been explored in highlighting limitations in positivism. The current work aims to build on quantum insights and how these may help us better understand the social world around us.


Sign in / Sign up

Export Citation Format

Share Document