scholarly journals Evaluation of Salinitys Induced Modification in Growth, Biochemical and Yield Characteristics of Spring Wheat (Triticum aestivum L.) Cultivars

2021 ◽  
Vol 2 (1) ◽  
pp. 11-17
Author(s):  
Hina Kanwal ◽  
Abida Kausar ◽  
Rashda Naheed ◽  
Noreen Akhtar ◽  
Fozia Farhat ◽  
...  

Salt stress impact was appraised on different antioxidative enzymes, MDA and H2O2 in ten spring wheat cultivars i.e., S-24, Lasani, Fsd-2008, Saher-2006, Inqlab-91, AARI-10, P.B-18, S.H-20, M.P-65, and G.A-20 when salinity applied at the seedling stage. The wheat cultivars were grown under saline (150 mM) and non-saline regimes (0 mM) in pots filled with sand. Diverse response in all wheat cultivars was observed in different studied attributes. Saline stress markedly decline SOD, CAT and POD conc. in different wheat cultivars. While some cultivars (S-24, Lasani, AARI-10 and GA-20) showed increase in these attributes under saline condition as compared to control. MDA and H2O2 content were increased in different wheat cultivars due to imposition of salt stress at the seedling stage. Whereas decrease in some cultivars was recorded in these attributes under saline regime than in non-saline conditions. Of all wheat cultivars, S-24, Lasani, AARI-10 and GA-20 showed high antioxidative activity, less lipid peroxidation and H2O2 content in plant shoot when salt stress applied at the seedling stage. On the basis of higher antioxidative activity and less MDA and H2O2 content, these four cultivars (S-24, Lasani, AARI-10 and GA-20) could be categorized as salt tolerant as compared to others

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1193
Author(s):  
Muhammad Sohail Saddiq ◽  
Shahid Iqbal ◽  
Muhammad Bilal Hafeez ◽  
Amir M. H. Ibrahim ◽  
Ali Raza ◽  
...  

Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1227
Author(s):  
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Ibrahim A. A. Mohamed ◽  
Zongkai Wang ◽  
Ahmed Khatab ◽  
...  

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.


2020 ◽  
Vol 8 (10) ◽  
pp. 1565 ◽  
Author(s):  
Abraham Mulu Oljira ◽  
Tabassum Hussain ◽  
Tatoba R. Waghmode ◽  
Huicheng Zhao ◽  
Hongyong Sun ◽  
...  

Soil salinity is one of the most important abiotic stresses limiting plant growth and productivity. The breeding of salt-tolerant wheat cultivars has substantially relieved the adverse effects of salt stress. Complementing these cultivars with growth-promoting microbes has the potential to stimulate and further enhance their salt tolerance. In this study, two fungal isolates, Th4 and Th6, and one bacterial isolate, C7, were isolated. The phylogenetic analyses suggested that these isolates were closely related to Trichoderma yunnanense, Trichoderma afroharzianum, and Bacillus licheniformis, respectively. These isolates produced indole-3-acetic acid (IAA) under salt stress (200 mM). The abilities of these isolates to enhance salt tolerance were investigated by seed coatings on salt-sensitive and salt-tolerant wheat cultivars. Salt stress (S), cultivar (C), and microbial treatment (M) significantly affected water use efficiency. The interaction effect of M x S significantly correlated with all photosynthetic parameters investigated. Treatments with Trichoderma isolates enhanced net photosynthesis, water use efficiency and biomass production. Principal component analysis revealed that the influences of microbial isolates on the photosynthetic parameters of the different wheat cultivars differed substantially. This study illustrated that Trichoderma isolates enhance the growth of wheat under salt stress and demonstrated the potential of using these isolates as plant biostimulants.


2015 ◽  
Vol 95 (4) ◽  
pp. 615-627 ◽  
Author(s):  
Hiroshi Kubota ◽  
Sylvie A. Quideau ◽  
Pierre J. Hucl ◽  
Dean M. Spaner

Kubota, H., Quideau, S. A., Hucl, P. J. and Spaner, D. M. 2015. The effect of weeds on soil arbuscular mycorrhizal fungi and agronomic traits in spring wheat (Triticum aestivum L.) under organic management in Canada. Can. J. Plant Sci. 95: 615–627. Understanding the influence of weeds in agroecosystems may aid in developing efficient and sustainable organic wheat production systems. We examined the effect of weeds on soil microbial communities and the performance of spring wheat (Triticum aestivum L.) under organic management in Edmonton, AB, Canada. We grew 13 Canadian spring wheat cultivars in organically managed hand-weeded less-weedy and weedy treatments in 2010 and 2011. The less-weedy treatment exhibited greater grain yield and tillers per square meter, while kernel weight, test weight, days to maturity, plant height, grain P and protein content were not altered by weed treatment. Canada Western Red Spring (CWRS) wheat cultivars CDC Go and CDC Kernen were the most yield-stable because they minimized fertile tiller reduction in response to weed pressure (10 and 13% reduction, respectively, compared with the average reduction of 20%). Other cultivars exhibited yield stability through increased kernel weight. The contribution of arbuscular mycorrhizal fungi (AMF) to the total phospholipid fatty acid increased in both treatments; however, the rate of this increase was greater in the weedy treatment than the less-weedy treatment (from 2.9 to 3.9%, from 2.8 to 3.1%, respectively). Weed dry biomass was positively correlated with AMF% in the less-weedy treatment only. Organic systems tend to be weedier than conventional systems. We found that weeds are important determinants of AMF proliferation in soil. In addition, choosing wheat cultivars that maintain important yield components under severe weed stress is one strategy to maximize yields in organic systems.


1981 ◽  
Vol 61 (3) ◽  
pp. 719-721 ◽  
Author(s):  
R. J. BAKER

Segregation for seed coat color was studied in F2 populations of crosses between eight red-seeded and three white-seeded cultivars of spring wheat (Triticum aestivum L. em Thell). Red Bobs and Pitic 62 each possessed a single gene for red seed coat color; Glenlea and NB320 each carried two genes; Neepawa, Park and RL4137 each possessed three genes. Data for crosses with Manitou were not sufficient to distinguish between the presence of two or three genes for seed coat color in this cultivar.


2006 ◽  
Vol 138 (5) ◽  
pp. 638-646 ◽  
Author(s):  
Ian L. Wise ◽  
Robert J. Lamb ◽  
Ronald I.H. McKenzie ◽  
Jay W. Whistlecraft

AbstractThe Canadian spring wheat (Triticum aestivum L.; Poaceae) cultivar ‘Superb’ was less susceptible to damage by Hessian fly, Mayetiola destructor (Say), than the spring wheat cultivars ‘AC Barrie’, ‘AC Foremost’, ‘McKenzie’, ‘AC Domain’, and ‘Glenlea’ in Manitoba. The partial resistance of ‘Superb’ was similar, at the seedling stage, to that of ‘Guard’, which possesses the resistance gene H18. Females laid eggs readily on all cultivars, providing no evidence for antixenosis, but few larvae developed on seedlings of ‘Superb’ and ‘Guard’, showing that antibiosis against larvae is the mechanism of resistance in these seedlings. In the field, where infestation of spring wheat takes place about 4 weeks after the seedling stage, ‘Guard’ continued to show high levels of resistance, but ‘Superb’ was less resistant, although still more resistant than highly susceptible cultivars. Infested stems of ‘Superb’ and ‘Nordic’ were less likely to break than infested stems of other cultivars, showing that these two cultivars are partially tolerant to infestation. Infested stems of ‘Guard’ and other cultivars showed high levels of stem breakage and are intolerant. Yield losses due to infestation by Hessian fly were mostly caused by the breakage and falling over of infested stems, which prevented the seeds on these stems from being harvested. Infested stems of all susceptible cultivars that remained standing at harvest had lower seed masses and fewer seeds per spike than uninfested stems, which contributed to yield loss. ‘Grandin’, a parent of ‘Superb’, is the probable source of resistance in ‘Superb’, but the pedigree of ‘Grandin’ provides no clue as to the gene(s) involved. The partial antibiosis and tolerance expressed by ‘Superb’ is sufficient to reduce losses to Hessian fly by 65% in comparison with a susceptible cultivar such as ‘AC Barrie’. ‘Superb’ is the first Canadian spring wheat cultivar identified to have an agronomically useful level of resistance to Hessian fly.


2015 ◽  
Vol 43 (2) ◽  
pp. 191-196
Author(s):  
Ensieh Ashrafi ◽  
Morteza Zahedi ◽  
Jamshid Razmjoo

The effect of salt stress on enzyme activities of nine alfalfa cultivars at germination and seedling stage was studied. The activities of SOD, GR, POX and APOX were higher in salt tolerant and lower in salt sensitive cultivars. Results of the effect of salt stress on the SOD, GR, POX, APOX activities and MDA content may be used to select salt tolerance cultivars at the germination and seedling stages. SOD, GR, POX, APOX and MDA may play an important role in salt tolerant mechanisms in alfalfa. DOI: http://dx.doi.org/10.3329/bjb.v43i2.21672 Bangladesh J. Bot. 43(2): 191-196, 2014 (September)


Sign in / Sign up

Export Citation Format

Share Document