scholarly journals STRENGTH AND DURABILITY EFFECT ON STABILIZED SUBGRADE SOIL

2016 ◽  
Vol 7 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Noraida Razali ◽  
Norazzlina M. Sa’don ◽  
Abdul Razak Abdul Karim

 This paper presents the development of strength and durability effect of stabilized soil. The clayey soil collected from Kota Samarahan, Sarawak was admixed with cement, fly ash and rubberchip as an additive for stabilization purposes. The optimum mixture determined was then used as a recommendation for the design guidelines of sub-grade based on JKR Standard Specification for Road Works. The stabilized clay specimens were prepared with 5% cement and various fly ash and rubber chips contents, of 5%, 10% and 15%, respectively. The specimens were then cured for 7 and 28 days before subjected to Unconfined Compressive Strength (UCS) tests and California Bearing Ratio (CBR) tests. As observed, the stabilization improved the strength and stiffness of the soil properties significantly. However, the addition of 15% rubberchip shows a reduction in strength for both 7 and 28 days curing period. From the study, the optimum mixture, which fulfilled the JKR Standard Specification was the mixture of 5% cement and 15% fly ash. However, the mixture of 5% cement and 10% rubberchip is also recommended to be used as an alternative to stabilize the subgrade for low volume road.

2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


2012 ◽  
Vol 594-597 ◽  
pp. 1445-1448
Author(s):  
Tao Cheng ◽  
Ke Qin Yan

Mechanics properties of lime- fly ash stabilized soil are investigated. First, the chemical composition of fly ash are analyzed by spectral analysis test. Compaction experiments of all mix proportion projects are carried out in different water conditions to obtain the optimum water contents. Then the optimum mix proportion is obtained by the unconfined compressive strength and the compression rebound modulus test. Finally, the pavement structures design for a highway of lime- fly ash stabilized soil road sub-base is done. By the comparison, a conclusion can be drawn that lime-fly ash stabilized soil is suitable for flexible pavement or semi-rigid pavement because of its good strength and rigidity which can effectively reduce thickness of the lower pavement and basic deflection.


2005 ◽  
pp. 211-216 ◽  
Author(s):  
Motoyuki SUZUKI ◽  
Takeshi TAGUCHI ◽  
Tetsuo FUJIMOTO ◽  
Yoko KAWAHARA ◽  
Tetsuro YAMAMOTO ◽  
...  

2019 ◽  
Vol 276 ◽  
pp. 05002
Author(s):  
Agus Ika Putra ◽  
Mohamed A. Shahin

The study presented in this paper evaluates the suitability of using slag (with cement) as a stabilizer, for improving the performance of expansive subgrade soil in road pavement. Several laboratory tests were conducted to determine the geotechnical engineering characteristics of the expansive soil and associated mechanical engineering performance. The tests conducted include the particle size distribution, standard Proctor compaction, Atterberg’s limits, free swelling, permeability, California bearing ratio (CBR), unconfined compressive strength (UCS), and repeated load triaxial (RLT). In this study, the use of slag (with cement) as a stabilizer followed three proportion schemes, and the selection of a specific stabilizer proportion was determined based on UCS value that satisfies the required standard as a subgrade for road pavement. The results recommended a stabilizer proportion for the soil studied to be 13.5% slag + 1.5% cement at 28 days curing time. This mixture resulted in a remarkable increase in the UCS value of eight times higher than the UCS value of the non-stabilized soil. The CBR value of the mixture was four times higher than the minimum required value for design of road pavement. The study presented herein confirmed that the exploitation of the by-product material of slag can indeed be useful, both in terms of improving the performance of the subgrade soil for road pavement and sparing the environment a spread of significant potential pollutant.


2015 ◽  
Vol 744-746 ◽  
pp. 628-631
Author(s):  
Yi Xiang Chen ◽  
Kai Xi An ◽  
Ke Xin Zhou ◽  
Chen Hao Xu

In order to reveal the effect of type of admixture and its content on the strength of stabilized soil, this paper uses the sludge as raw soil and cement, fly ash as curing agent, and analyzes the strength characteristics of samples mixed stabilized according to certain content. Using the unconfined compressive strength test, the compressive strength of the samples is tested. The effect of curing agent type and its content on the compressive strength is investigated. From the experimental results, it can be seen that the content of cement and fly ash has much effect on the strength. The conclusions obtained can have some conference values on the foundation treatment and reuse of waste resources utilization.


2020 ◽  
Vol 195 ◽  
pp. 06001
Author(s):  
Canan Turan ◽  
Akbar Javadi ◽  
Raffaele Vinai ◽  
Nader Shariatmadari ◽  
Raziyeh Farmani

Fine-grained soils may have undesired characteristics such as high swelling potential and low strength, thus requiring improvements. One of the stabilization methods involves the use of fly ash. Fly ash is a waste material obtained from burning coal in thermal power plants. The use of fly ash is encouraged as an alternative material for soil stabilization, due to its features such as pozzolanic properties and economic availability. This paper describes the results of an experimental study on stabilization of a clayey soil with fly ash. Unconfined compressive strength (UCS), triaxial and consolidation tests were carried out on samples of kaolinite mixed with class C fly ash at different percentages and cured for 1, 7, and 28 days, in order to study the effects of class C fly ash on the mechanical behaviour of the stabilized soil. The results showed that the inclusion of fly ash significantly improves the strength characteristics of the soil. Curing time was also found to have a significant effect on improving the properties of the soil.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-7
Author(s):  
Damilola A. Ogundare

The need to improve the strength and durability of subgrade soil in recent times has become imperative using stabilizing materials that can be sourced locally at no/or very low cost in other to reach their design life span before a major repair is required. This necessitates the improvement that could be achieved by stabilizing subgrade soil along Ede-Abeere road in Ede, Osun State with the Waste Plastic Bottle (WPB). The soil samples were collected at 1m depth at different portions along the road and stabilized with varying percentages of WPB. Laboratory tests conducted were sieve analysis, natural moisture content, specific gravity, Atterberg limit, compaction, California Bearing Ratio (CBR), and Unconfined Compressive Strength (UCS) Test. The CBR of the stabilized soil ranges from 1.28% to 12.20% with 2.5% WPB having the highest CBR value of 12.20% meeting the recommended value for unsoaked CBR of subgrade soils. However, the statistical model reliably adjudged that there is a significant relationship between the CBR values of subgrade soil-WPB mixture obtained. Thus, it is recommended that WPB at 2.5% can serve as a stabilizing material as it increases the CBR of the subgrade soil and as an effective method of disposing of WPB.


2016 ◽  
Vol 5 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Antonia Athanasopoulou

Abstract Very often, pavements constructed in an economical manner or matching surface elevations of adjacent lanes cannot be designed for the soil conditions of the existing subgrade. Therefore, there is a need to stabilize the soil with an appropriate chemical substance in order to increase its strength to a satisfactory level. For the enhancement of subgrade soil strength characteristics, lime and cement are the most commonly used stabilizers. An experimental program was directed to the evaluation of a clayey soil and its mixtures with different cement contents performing tests on the index properties, the moisture-density relation, the unconfined compressive strength, and linear shrinkage. There is a definite improvement in strength. The time interval used to cure the prepared specimens affected positively both strength and plasticity features of the mixtures. A comparison with mixtures of the same soil with lime has been made, because of the wide use of lime in clay soil stabilization projects.


2021 ◽  
Vol 13 (10) ◽  
pp. 5681
Author(s):  
You Wang ◽  
Hongdong Zhang ◽  
Zhuangzhuang Zhang

Sustainable highway construction and operation are threatened by high-liquid-limit soil with low strength and poor water stability in Dongting Lake areas. In order to obtain a soil stabilizer that can effectively improve its strength and water stability, first the author selected inorganic materials (cement, quicklime and fly ash) and sulfonated oil (SO) as the main components of the composite soil stabilizer. Then, a series of single admixture tests were carried out to explore the strength and water stability mechanism of single admixture stabilized soil. Finally, a series of orthogonal experiments and cost analyses were carried out to obtain the formula of the composite stabilizer. According to the results of single doping, inorganic materials can significantly enhance the strength and stiffness of high-liquid-limit soil. The content of SO has a strong correlation with the water stability of high-liquid-limit soil. On a microscopic scale, X-ray diffraction patterns and scanning electron microscopy images explained this law. According to the orthogonal results, the formula of the composite soil stabilizer is: cement 4.5%, quicklime 1.5%, fly ash 2.5%, and SO 0.2%. This paper provides a method to improve high-liquid-limit soil, which is beneficial to sustainable construction and operation of the highway.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Ziming Cao ◽  
Qinyong Ma ◽  
Hongwei Wang

The purpose of this article is to evaluate the influence of basalt fiber content on the static-dynamic mechanical properties and microstructure of cement-fly ash-stabilized soil. The optimum mixed contents of cement and fly ash were obtained from the results of a series of physical and mechanical experiments. Based on the optimum mixed contents of cement and fly ash, the static-dynamic mechanical performances and microstructure of cement-fly ash-stabilized soil reinforced with basalt fiber were studied by means of the unconfined compression test, dynamic compression test (namely, SHPB test), and SEM test. The results demonstrated that the addition of basalt fiber in cement-fly ash-stabilized soil significantly enhanced the static-dynamic mechanical properties of stabilized soil. With basalt fiber content varying from 0% to 1.2%, the unconfined compressive strength, dynamic compressive strength, dynamic increase factor, and specific energy absorption of stabilized soil showed an upward trend first and a downward trend subsequently. The unconfined compressive strength, dynamic compressive strength, and energy absorption ability have a maximum improvement under the optimum basalt fiber content of 0.6%. In addition, the inclusion of basalt fiber can change the failure pattern of cement-fly ash-stabilized soil. The fractal dimension of broken fragments decreased gradually with the increasing basalt fiber content and increased correspondingly with the increasing impact loading pressure. With the basalt fiber content of 0.6%, a stable internal space structure produced inside stabilized soil. However, there are many fiber-fiber weak interfaces that appeared inside stabilized soil under the basalt fiber content of 1.2%. The microstructural observations can be considered as the good interpretations to verify the macroscopic mechanical characteristics.


Sign in / Sign up

Export Citation Format

Share Document