scholarly journals Experimental Study on Mechanics and Water Stability of High Liquid Limit Soil Stabilized by Compound Stabilizer: A Sustainable Construction Perspective

2021 ◽  
Vol 13 (10) ◽  
pp. 5681
Author(s):  
You Wang ◽  
Hongdong Zhang ◽  
Zhuangzhuang Zhang

Sustainable highway construction and operation are threatened by high-liquid-limit soil with low strength and poor water stability in Dongting Lake areas. In order to obtain a soil stabilizer that can effectively improve its strength and water stability, first the author selected inorganic materials (cement, quicklime and fly ash) and sulfonated oil (SO) as the main components of the composite soil stabilizer. Then, a series of single admixture tests were carried out to explore the strength and water stability mechanism of single admixture stabilized soil. Finally, a series of orthogonal experiments and cost analyses were carried out to obtain the formula of the composite stabilizer. According to the results of single doping, inorganic materials can significantly enhance the strength and stiffness of high-liquid-limit soil. The content of SO has a strong correlation with the water stability of high-liquid-limit soil. On a microscopic scale, X-ray diffraction patterns and scanning electron microscopy images explained this law. According to the orthogonal results, the formula of the composite soil stabilizer is: cement 4.5%, quicklime 1.5%, fly ash 2.5%, and SO 0.2%. This paper provides a method to improve high-liquid-limit soil, which is beneficial to sustainable construction and operation of the highway.

2018 ◽  
Vol 9 (1) ◽  
pp. 68 ◽  
Author(s):  
Samnang Phoak ◽  
Ya-Sheng Luo ◽  
Sheng-Nan Li ◽  
Qian Yin

In this study, the influence of fly ash (FA) content (0%, 10%, 20%, and 30%) on the alteration in the physical and mechanical parameters of loess is investigated. The influences of curing time (0, 14, and 28 days) and submergence and non-submergence conditions are analyzed as well. Analysis considers the variation in Atterberg limits (liquid limit, plastic limit, and plasticity index), compaction parameters (optimum moisture content (OMC), and maximum dry density (MDD)), unconfined compressive strength (UCS) stress, UCS strain, California bearing ratio (CBR) value, and swell potential. Results show that the application of FA-stabilized loess (FASL) is effective. Specifically, the MDD decreases and the OMC increases, the UCS stress increases and the UCS strain decreases, the CBR value improves and the swell potential declines, but Atterberg limits are insignificantly changed by the increase in the FA ratio compared with those of untreated loess. The UCS stress and CBR value are improved with the increase in curing time, whereas the UCS strain is negligible. FASL under submergence condition plays an important role in improving the effect of FA on the UCS stress and CBR value compared with that under non-submergence condition. The UCS stress and CBR value are more increased and more decreased than the UCS strain in submerged samples. Therefore, the application of FASL in flood areas is important for obtaining sustainable construction materials and ensuring environmental protection.


2018 ◽  
Vol 156 ◽  
pp. 05017 ◽  
Author(s):  
April Anne S. Tigue ◽  
Jonathan R. Dungca ◽  
Hirofumi Hinode ◽  
Winarto Kurniawan ◽  
Michael Angelo B. Promentilla

A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS), sodium hydroxide (SH), and sodium aluminate (SA) were explored. The influence of amount of fly ash (15% and 25%), addition of volcanic ash (0% and 12.5%), and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30) were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS). To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX) were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.


2016 ◽  
Vol 7 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Noraida Razali ◽  
Norazzlina M. Sa’don ◽  
Abdul Razak Abdul Karim

 This paper presents the development of strength and durability effect of stabilized soil. The clayey soil collected from Kota Samarahan, Sarawak was admixed with cement, fly ash and rubberchip as an additive for stabilization purposes. The optimum mixture determined was then used as a recommendation for the design guidelines of sub-grade based on JKR Standard Specification for Road Works. The stabilized clay specimens were prepared with 5% cement and various fly ash and rubber chips contents, of 5%, 10% and 15%, respectively. The specimens were then cured for 7 and 28 days before subjected to Unconfined Compressive Strength (UCS) tests and California Bearing Ratio (CBR) tests. As observed, the stabilization improved the strength and stiffness of the soil properties significantly. However, the addition of 15% rubberchip shows a reduction in strength for both 7 and 28 days curing period. From the study, the optimum mixture, which fulfilled the JKR Standard Specification was the mixture of 5% cement and 15% fly ash. However, the mixture of 5% cement and 10% rubberchip is also recommended to be used as an alternative to stabilize the subgrade for low volume road.


2021 ◽  
Vol 881 ◽  
pp. 157-162
Author(s):  
Jia Lin Hou ◽  
Sheng Jie Zhou ◽  
Yan Zhang ◽  
Liang Fan

This document takes saline soil in Binzhou as the research object using smelter slag as the soil stabilizer to solid saline soil in Binzhou, which has been proved achieving good performance of saline soil solidification. The results show that the soil solidification developed indoors can be used in combination with low-dose lime to achieve good performance in solidification of saline soil. The 7d strength is relatively higher than that of both ordinary lime stabilized soil and lime-fly ash stabilized soil, which completely meet the unconfined compressive strength requirements of the base layer in the current technical specifications. The soil stabilizer can improve the unconfined compressive strength of the saline soil, especially the post-14-day strength, and improve the immersion compressive strength and water stability of the cured saline soil. As the dosage of curing agent gets higher than seven percent, the 28d strength change of cured soil is no longer significant. The test result demonstrates that the dosage of curing agent should be less than seven percent.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2012 ◽  
Vol 594-597 ◽  
pp. 1445-1448
Author(s):  
Tao Cheng ◽  
Ke Qin Yan

Mechanics properties of lime- fly ash stabilized soil are investigated. First, the chemical composition of fly ash are analyzed by spectral analysis test. Compaction experiments of all mix proportion projects are carried out in different water conditions to obtain the optimum water contents. Then the optimum mix proportion is obtained by the unconfined compressive strength and the compression rebound modulus test. Finally, the pavement structures design for a highway of lime- fly ash stabilized soil road sub-base is done. By the comparison, a conclusion can be drawn that lime-fly ash stabilized soil is suitable for flexible pavement or semi-rigid pavement because of its good strength and rigidity which can effectively reduce thickness of the lower pavement and basic deflection.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mengna Yang ◽  
Junzhe Liu ◽  
Hui Wang ◽  
Yushun Li ◽  
Yanhua Dai ◽  
...  

Chemical quantitative analysis of effective anticorrosion component and micro-analysis of hydration products of fly ash and slag on the influence of the nitrites corrosion inhibition was studied by the free nitrite ion concentration and X-ray diffraction pattern. The free nitrite ion concentration was used to describe the corrosion inhibition effect of nitrites. And the X-ray diffraction patterns were used to analyze the adsorption properties. The research results show that fly ash and slag were beneficial for improving the corrosion inhibition effect of nitrites. Cement-based materials with slag at low content presented high free nitrite ion concentration, but the addition of low content of fly ash harmed the corrosion inhibition effect of nitrites. The specimens incorporated with both fly ash and slag can reach the highest free nitrite ion concentration when the compounding proportion was 1:1. It was concluded that the extent of mineral admixtures of the corrosion inhibition effect of nitrites was affected by its type and content.


2018 ◽  
Vol 195 ◽  
pp. 03015
Author(s):  
John Tri Hatmoko ◽  
Hendra Suryadharma

A series of experiments including unconfined compression tests, three-axial tests, compaction tests, and split tensile tests were undertaken to investigate the influence of compaction parameters on the behaviour of bagasse ash-calcium carbide residue stabilized soil. A preliminary study on soil with the addition of 4%, 6%, 8%, 10%, and 12% calcium carbide residue established that the lime fixation point (LFP) was 4%. Then 9% bagasse ash was added to soil with 4% calcium carbide residue, and the cation exchanges and pozzolanic reactions were investigated. The addition of calcium carbide residue to bagasse ash stabilized soil caused short-term changes due to cation exchange reactions, including an increase in the friction angle and cohesion in the stabilized soil. In addition, due to the short-term reaction, the maximum stiffness in three-axial tests occurred in the samples moulded with less than their optimum moisture content (OMC), whereas the peak strength occurred in the samples moulded at their OMC. After a 28-day curing period, pozzolanic reactions improved significantly the three-axial peak strength and stiffness of the stabilized soil, and the maximum three-axial shear strength and stiffness occurred in the samples prepared below their OMC.


This paper discusses the Ultimate Bearing Capacity of a stabilized soil by using the fly ash, stone dust and rubber powder for design of a pavement. This paper will help in utilization of locally available waste materials to reuse in the subbase and subgrade layers of pavement. Rubber powder is a waste byproduct generated from the recycling of tires, and is not so easy for degradable, and hence leads to release of harmful gases when it tends to burn. Stone dust is a locally available waste generated product from quarries. The generation of stone dust is increasing day to day in large quantity. The huge quantity of stone dust storage amount will affect the quality of soil. Fly ash is waste combusted coal ash powder generated from the steamers of coal boilers with the burning of fuel gases together. In the sub grade layer the soil is mixed in different proportions with stone dust for hard foundation. In the sub base layer the soil is stabilized with the combination of rubber powder and fly ash. When the rubber powder and fly ash, mixed with water for compaction generates a bond between the soil particles to settle the air fields. In this paper various percentages of rubber powder, stone dust and fly ash with different samples for pavement is layered, and after that plate load test is conducted upon it.


Sign in / Sign up

Export Citation Format

Share Document