scholarly journals REDUCTION IN WEIGHT OF HOUSING OF AXIAL MINE FAN IMPELLER WITH ROTATING BLADES

2021 ◽  
Vol 2 (4) ◽  
pp. 62-66
Author(s):  
Nadezhda V. Panova

The study uses topological optimization techniques in design of the housing of an impeller meant for the increased rotational speeds in ANSYS. The objective function of the impeller optimization is the minimum yield, and the optimization parameter is assumed as the change in the interior volume of the structure under certain constraints imposed on the external geometry of the impeller. The optimization of the impeller housing shows that it is possible to reduce the weight of the power belt, and to make one web to be load-bearing and the other web to be thinner, or to switch to the impeller with one web. Moreover, the design can use some elements of a lattice structure.

Alloy Digest ◽  
2017 ◽  
Vol 66 (2) ◽  

Abstract Strenx 700 is a high-strength structural steel with a minimum yield strength of 650–700 MPa (94–102 ksi) depending on thickness. Strenx 700 meets the requirements of EN 10 025-6 for the S690 grade and thicknesses. Typical applications include demanding load-bearing structures. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, machining, and joining. Filing Code: SA-779. Producer or source: SSAB Swedish Steel Inc..


2021 ◽  
Vol 11 (9) ◽  
pp. 3757
Author(s):  
Lucian Ștefăniță Grigore ◽  
Ionica Oncioiu ◽  
Iustin Priescu ◽  
Daniela Joița

Today, terrestrial robots are used in a multitude of fields and for performing multiple missions. This paper introduces the novel development of a family of crawling terrestrial robots capable of changing very quickly depending on the missions they have to perform. The principle of novelty is the use of a load-bearing platform consisting of two independent propulsion systems. The operational platform, which handles the actual mission, is attached (plug and play) between the two crawler propulsion systems. The source of inspiration is the fact that there are a multitude of intervention robots in emergency situations, each independent of the other. In addition to these costs, there are also problems with the specialization of a very large number of staff. The present study focused on the realization of a simplified, modular model of the kinematics and dynamics of the crawler robot, so that it can be easily integrated, by adding or removing the calculation modules, into the software used. The designed model was integrated on a company controller, which allowed us to compare the results obtained by simulation with those obtained experimentally. We appreciate that the analyzed Explosive Ordnance Disposal (EOD) robot solution represents a premise for the development of a family of EOD robots that use the same carrier platform and to which a multitude of operational platforms should be attached, depending on the missions to be performed.


2016 ◽  
Vol 24 (2) ◽  
pp. 12-25 ◽  
Author(s):  
Samo Drobne ◽  
Mitja Lakner

Abstract The use of different objective functions in hierarchical aggregation procedures is examined in this paper. Specifically, we analyse the use of the original Intramax objective function, the sum-of-flows objective function, the sum-of-proportions-to-intra-regional-flows objective function, Smart’s weighted interaction index, the first and second CURDS weighted interaction indices, and Tolbert and Killian’s interaction index. The results of the functional regionalisation have been evaluated by self-containment statistics, and they show that the use of the original Intramax procedure tends to delineate operationally the most persuasive and balanced regions that, regarding the intra-regional flows, homogeneously cover the analysed territory. The other objective functions give statistically better but operationally less suitable results. Functional regions modelled using the original Intramax procedure were compared to the regions at NUTS 2 and NUTS 3 levels, as well as to administrative units in Slovenia. We conclude that there are some promising directions for further research on functional regionalisation using hierarchical aggregation procedures.


Author(s):  
Jitendra Singh Bhadoriya ◽  
Atma Ram Gupta

Abstract In recent times, producing electricity with lower carbon emissions has resulted in strong clean energy incorporation into the distribution network. The technical development of weather-driven renewable distributed generation units, the global approach to reducing pollution emissions, and the potential for independent power producers to engage in distribution network planning (DNP) based on the participation in the increasing share of renewable purchasing obligation (RPO) are some of the essential reasons for including renewable-based distributed generation (RBDG) as an expansion investment. The Grid-Scale Energy Storage System (GSESS) is proposed as a promising solution in the literature to boost the energy storage accompanied by RBDG and also to increase power generation. In this respect, the technological, economic, and environmental evaluation of the expansion of RBDG concerning the RPO is formulated in the objective function. Therefore, a novel approach to modeling the composite DNP problem in the regulated power system is proposed in this paper. The goal is to increase the allocation of PVDG, WTDG, and GSESS in DNP to improve the quicker retirement of the fossil fuel-based power plant to increase total profits for the distribution network operator (DNO), and improve the voltage deviation, reduce carbon emissions over a defined planning period. The increment in RPO and decrement in the power purchase agreement will help DNO to fulfill round-the-clock supply for all classes of consumers. A recently developed new metaheuristic transient search optimization (TSO) based on electrical storage elements’ stimulation behavior is implemented to find the optimal solution for multi-objective function. The balance between the exploration and exploitation capability makes the TSO suitable for the proposed power flow problem with PVDG, WTDG, and GSESS. For this research, the IEEE-33 and IEEE-69 low and medium bus distribution networks are considered under a defined load growth for planning duration with the distinct load demand models’ aggregation. The findings of the results after comparing with well-known optimization techniques DE and PSO confirm the feasibility of the method suggested.


2016 ◽  
Vol 38 (4) ◽  
pp. 307-317
Author(s):  
Pham Hoang Anh

In this paper, the optimal sizing of truss structures is solved using a novel evolutionary-based optimization algorithm. The efficiency of the proposed method lies in the combination of global search and local search, in which the global move is applied for a set of random solutions whereas the local move is performed on the other solutions in the search population. Three truss sizing benchmark problems with discrete variables are used to examine the performance of the proposed algorithm. Objective functions of the optimization problems are minimum weights of the whole truss structures and constraints are stress in members and displacement at nodes. Here, the constraints and objective function are treated separately so that both function and constraint evaluations can be saved. The results show that the new algorithm can find optimal solution effectively and it is competitive with some recent metaheuristic algorithms in terms of number of structural analyses required.


2010 ◽  
Vol 163-167 ◽  
pp. 2365-2368 ◽  
Author(s):  
Shu Ling Qiao ◽  
Zhi Jun Han

In this paper, determinate beam and indeterminate beam with multiple span are optimized by using genetic algorithm, the mathematic model of optimize beam is built and the processing method of constraint conditions is given. The examples show that the algorithm could be used for optimizing determinate structure, and also optimizing indeterminate structure. Compared to the linear approximation method, genetic algorithm has advantages of being simple, easy, fast convergence and has no use for changing the objective function and constraint conditions to linearity or other processing. Its results agree with linear approximation method’s. It is the other method that can be adopt in engineering field.


2021 ◽  
Vol 63 (2) ◽  
pp. 157-162
Author(s):  
Ali Rıza Yıldız ◽  
Mehmet Umut Erdaş

Abstract In this paper, a new hybrid Taguchi salp swarm algorithm (HTSSA) has been developed to speed up the optimization processes of structural design problems in industry and to approach a global optimum solution. The design problem is posed for the shape optimization of a seat bracket with a mass objective function and a stress constraint. Objective function evaluations are based on finite element analysis, while the response surface method is used to obtain the equations necessary for objective and constraint functions. Recent optimization techniques such as the salp swarm algorithm, grasshopper optimization algorithm and, Harris hawks optimization algorithm are used to compare the performance of the HTSSA in solving the structural design problem. The results show the hybrid Taguchi salp swarm algorithm’s ability and the superiority of the method developed for optimum product design processes.


Author(s):  
Robert R. Mayer ◽  
Noboru Kikuchl ◽  
Richard A. Scott

Abstract The topological optimization of components to maximize crash energy absorption for a given volume is considered. The crash analysis is performed using a DYNA3D finite element analysis. The original solid elements are replaced by ones with holes, the hole size being characterized by a so-called density (measure of the reduced volume). A homogenization method is used to find elastic moduli as a function of this density. Simpler approximations were developed to find plastic moduli and yield stress as functions of density. Optimality criteria were derived from an optimization statement using densities as the design variables. A resizing algorithm was constructed so that the optimality criteria are approximately satisfied. A novel feature is the introduction of an objective function based on strain energies weighted at specified times. Each different choice of weighting factors leads to a different structure, allowing a range of design possibilities to be explored. The method was applied to an automotive body rear rail. The original design and a new design of equal volume with holes were compared for energy absorption.


2021 ◽  
Author(s):  
Konstantin Gregor ◽  
Thomas Knoke ◽  
Andreas Krause ◽  
Mats Lindeskog ◽  
Anja Rammig

<p>Forests are considered a major player in climate change mitigation since they influence local and global climate through biogeochemical and biogeophysical feedbacks. However, they are themselves vulnerable to future environmental changes. Thus, forest management needs to focus on both mitigation and adaptation. The special challenge is that decisions on management strategies must be taken today while still a broad range of emission pathways is possible, and a good decision regarding one assumed pathway might turn out to be a bad decision when a different one materializes.</p><p>With our study we try to aid this decision-making process by finding management portfolios that provide relevant ecosystem functions such as local and global climate regulation, water availability, flood protection, and timber production for a wide range of future climate scenarios. To simulate according ecosystem processes and functions, we run the dynamic vegetation model LPJ-GUESS for the most relevant forest types across Europe for four different RCPs and five different management options. We analyze our simulation outputs using robust optimization techniques to determine optimal forest management portfolios for each 0.5° grid cell in Europe that ensure a balanced provision of all considered ecosystem functions in the future under any of the four RCPs.</p><p>Generally, our simulations and optimizations show that diversified management portfolios are most suitable to provide the set of considered ecosystem functions in all climate scenarios everywhere in Europe. While the portfolios show different compositions in different regions, they are quite similar in adjacent grid cells. The suggested future forest composition in Europe tends to be fairly close to present day values except for Northern Europe where a much higher proportion of deciduous types is proposed.</p><p>Management as high forest (trees emerging from seeds) remains the most important form of management. The proposed share of coppice management is much higher in Central and Northern Europe (~20%) than in Southern Europe, where its disadvantages (e.g., high water consumption and its non-suitability to provide long-lived wood products) are more pronounced.</p><p>A succession of ~30% of managed forest to natural forest is proposed by the optimization as it provides highest carbon storage and surface roughness values. However, this infeasibly high share is reduced if the provision of wood harvest is valued higher in the optimization compared to the other ecosystem functions.</p><p>Current public focus on forests lies often on their potential for carbon sequestration, but future forest management must also address the other services that they provide. This work gives insights on how this may be done.</p>


Author(s):  
Nadim Diab ◽  
Ahmad Smaili

Mechanical linkages are widely used in the industry and the synthesis of such mechanisms may require optimization depending on the number of precision positions required. Many intelligent optimization techniques (Genetic, Tabu, Simulated Annealing, etc) have been proposed in the literature, one of them being the Ant-Search which was first proposed by the authors in 2007. In this paper, a Modified Ant-Search (MAS) technique is proposed to optimize the synthesis of a four-bar mechanism with a path generation task. Two major improvements are applied over the previous algorithm: ants pheromone update and exploration/exploitation techniques are both modified. Unlike the previous work where a constant quantity of pheromones was added during each iteration, in this paper, the pheromone deposit rate is proportional to the error of the objective function. Such a modification in the pheromone update rule is expected to differentiate between the behaviors of different ants and better govern their motion in the subsequent iterations. Moreover, the second major improvement targets the exploration/exploitation techniques followed by the ants. Unlike the previous work where exploration dominates during the early iteration stages and exploitation during the late ones, this work implements a more dynamic strategy where ants enter and leave the exploration/exploitation processes as governed by parameters related to the objective function error and pheromone deposit levels. Such modifications applied to the Ant-Search (AS) technique are expected to ensure a better chance of converging to a global minimum. The MAS technique is applied for a few path generation tasks with prescribed timing along with a set of linear constraints. Results are compared with previous work in the literature where the newly proposed technique showed appreciable improvement as evaluated by the structural error objective function. Future work possibilities are also introduced.


Sign in / Sign up

Export Citation Format

Share Document