scholarly journals Conformality of atomic layer deposition in microchannels: impact of process parameters on the simulated thickness profile

Author(s):  
Jihong Yim ◽  
Emma Verkama ◽  
Jorge Velasco ◽  
Karsten Arts ◽  
Riikka Puurunen

Unparalleled conformality is driving ever new applications for atomic layer deposition (ALD), a thin film growth method based on repeated self-terminating gas-solid reactions. In this work, we re-implemented a diffusion-reaction model from the literature to simulate the propagation of film growth in wide microchannels and used that model to explore trends in both the thickness profile as a function of process parameters and different diffusion regimes. In the model, partial pressure of ALD reactant was analytically approximated. Simulations were made as function of kinetic and process parameters such as temperature, (lumped) sticking coefficient, molar mass of the ALD reactant, reactant’s exposure time and pressure, total pressure, density of the grown material, and growth per cycle (GPC) of the ALD process. Increasing the molar mass and the GPC, for example, resulted in a decreasing penetration depth into the microchannel. The influence of the mass and size of the inert gas molecules on the thickness profile depended on the diffusion regime (free molecular flow vs. transition flow). The modelling was compared to a recent slope method to extract the sticking coefficient. The slope method gave systematically somewhat higher sticking coefficient values compared to the input sticking coefficient values; potential reasons behind the observed differences are discussed.

Author(s):  
Yoon Kyeung Lee ◽  
Chanyoung Yoo ◽  
Woohyun Kim ◽  
Jeongwoo Jeon ◽  
Cheol Seong Hwang

Atomic layer deposition (ALD) is a thin film growth technique that uses self-limiting, sequential reactions localized at the growing film surface. It guarantees exceptional conformality on high-aspect-ratio structures and controllability...


2017 ◽  
Vol 326 ◽  
pp. 281-290 ◽  
Author(s):  
Mari Napari ◽  
Manu Lahtinen ◽  
Alexey Veselov ◽  
Jaakko Julin ◽  
Erik Østreng ◽  
...  

2004 ◽  
Vol 19 (11) ◽  
pp. 3353-3358 ◽  
Author(s):  
Titta Aaltonen ◽  
Mikko Ritala ◽  
Yung-Liang Tung ◽  
Yun Chi ◽  
Kai Arstila ◽  
...  

The low limit of the deposition temperature for atomic layer deposition (ALD) of noble metals has been studied. Two approaches were taken; using pure oxygen instead of air and using a noble metal starting surface instead of Al2O3. Platinum thin films were obtained by ALD from MeCpPtMe3 and pure oxygen at deposition temperature as low as 200 °C, which is significantly lower than the low-temperature limit of300 °C previously reported for the platinum ALD process in which air was used as the oxygen source. The platinum films grown in this study had smooth surfaces, adhered well to the substrate, and had low impurity contents. ALD of ruthenium, on the other hand, took place at lower deposition temperatures on an iridium seed layer than on an Al2O3 layer. On iridium surface, ruthenium films were obtained from RuCp2 and oxygen at 225 °C and from Ru(thd)3 and oxygen at 250 °C, whereas no films were obtained on Al2O3 at temperatures lower than 275 and 325 °C, respectively. The crystal orientation of the ruthenium films was found to depend on the precursor. ALD of palladium from a palladium β-ketoiminate precursor and oxygen at 250 and 275 °C was also studied. However, the film-growth rate did not saturate to a constant level when the precursor pulse times were increased.


2019 ◽  
Vol 493 ◽  
pp. 779-786 ◽  
Author(s):  
Sarah Hashemi Astaneh ◽  
Gregory Jursich ◽  
Cortino Sukotjo ◽  
Christos G. Takoudis

2018 ◽  
Vol 282 ◽  
pp. 232-237
Author(s):  
Adam Hinckley ◽  
Anthony Muscat

Atomic layer deposition (ALD) was used to grow titanium nitride (TiN) on SiO2with TiCl4and N2H4. X-ray photoelectron spectroscopy (XPS) and ellipsometry were used to characterize film growth. A hydrogen-terminated Si (Si-H) surface was used as a reference to understand the reaction steps on SPM cleaned SiO2. The growth rate of TiN at 573 K doubled on Si-H compared to SiO2because of the formation of Si-N bonds. When the temperature was raised to 623 K, O transferred from Ti to Si to form Si-N when exposed to N2H4. Oxygen and Ti could be removed at 623 K by TiCl4producing volatile species. The added surface reactions reduce the Cl in the film below detection limits.


Sign in / Sign up

Export Citation Format

Share Document