scholarly journals The Effect of Some Primary Tillage Equipment on Performance Efficiency Under Two Level of Soil Moisture Content and Different Machinery Unit Speeds

Author(s):  
Yasir A. Alsayyah ◽  
Hussein A. Jebur

A field experiment was conducted in the experiment fields of the college of agriculture - University of Baghdad – Abu Ghraib , 2016 in a silt clay loam soil , to Evaluate the effect of some primary tillage equipment and two of levels of soil moisture content in some of performance efficiency indicator for different forward speed , ArmaTrac 845e and ITM 285 New tractor with moldboard and chisel and sweep plow as a machinery unit have been used in this study . Two levels of soil Moisture content include (18 – 20 % ) and (14 – 16%) represented main plot , three types of plow ( moldboard , chisel and sweep) represent sub plot , five machinery speeds included ( 1.5 , 2.53 , 3.75 , 5.3 and 6.71 km.hr-1 ) represent sub plot , Slippage percentage (%) , fuel consumption (L.hr-1) , drawbar pull (KN) , Field capacity (he.hr-1) are have beenbeen measured in this study  . And the results have been analyzed by using the order of the spilt - spilt - plot with randomize complete block design with three replicates and tested by the way averages less significant difference and the level of probability of 0.05 . The results show that : the soil  moisture content ( 14 – 16 % ) has got a less value of slippage percentage % , fuel consumption L.hr-1 , drawbar pull Kn and higher field capacity ha.hr-1 , and sweep plow has got a less value of slippage percentage , fuel consumption and drawbar pull , and the chisel plow has got a higher field capacity , and when the tractor speed is increased it leads to aincrease in the slippage and fuel consumption and drawbar pull and field capacity will be anincrease .

2019 ◽  
Vol 9 (1) ◽  
pp. 43-49
Author(s):  
Kareem Ibrahim kareem ◽  
P. Sven

Cost of fuel has a significant impact on the input costs of agricultural production, especially during primary tillage. It is affected by several parameters including tractor forward speed, depths of ploughing, and plough types. The experiment was performed in a Soil Hall at Harper Adams University, United Kingdom, in April 2015. A Massey Ferguson 8480 4WD tractor was used for investigating objectives of this study. The experiment was performed in a sandy loam soil texture at 11.73% soil moisture content and 1.35 (g/cm3) dry bulk density to study the amount of fuel consumption (l/ha) and the performance of tractor with effect of moldboard and disc ploughs as ploughs type, 15 and 20 cm as ploughing depth and 5 and 7 km/h as tractor forward speeds. The results showed that fuel consumption with a disc plough 5% was higher compared to the moldboard. Fuel consumption decreased approximately 8% when tractor at 7 km/h. Fuel consumption significantly decreased about 34% when ploughing depth increased from 15 to 20 cm. The power requirement to operate moldboard plough was higher by about 14% than a disc. The power requirement at speeds of 7 km/h was higher compared to the speeds of 5 km/h by about 27%. When the depth of ploughing increased from 15 to 20 cm, the power requirement increased by about 1.5%.


1978 ◽  
Vol 58 (2) ◽  
pp. 347-356
Author(s):  
W. N. BLACK

Irrigation and nitrogen (N) requirements of a natural pasture sward were studied on a Charlottetown sandy loam soil over a 5-yr period. The soil moisture content at the 0-to 15- and 15- to 30-cm depths was determined at from 7- to 10-day intervals, while irrometer soil moisture readings at 15-, 30-, and 45-cm depths were recorded more frequently during the grazing seasons. Soil moisture content in irrigated plots averaged 92 and 94% of field capacity, respectively, at 0- to 15- and 15- to 30-cm sampling depths. In non-irrigated plots, corresponding values were 77 and 82%. N treatments resulted in significant dry matter (DM) increases over untreated plots. Yield differences among plots receiving 56, 84, and 112 kg of N/ha in mid-June and again in mid-August were not significant. Early spring and September applications of N at 56 kg/ha, combined with mid-June and early August supplements of N at 84 kg/ha were superior to all other treatments in prolonging the grazing period. Neither irrigation nor N affected the characteristic yield decline of naturally occurring forage species in mid- and late-season. Mean DM production for the 5-yr period, and for years, showed no significant N treatment × moisture level interaction. While irrigation failed to increase yields significantly, livestock preferred to graze the irrigated plots. As a result of less competition from grasses, volunteer white clover became better established, and constituted a larger percentage of the sward than on non-irrigated plots.


1985 ◽  
Vol 65 (1) ◽  
pp. 193-199 ◽  
Author(s):  
G. E. CHEVRIER ◽  
K. A. STEWART

Lettuce seeds (Lactuca sativa L. ’Boston Dark Green’) were sown by fluid drill and as dry seed into soils at 25%, 50%, 75% and 100% field capacity (FC). Fluid drilling reduced the time to initial emergence and 50% emergence at soil moisture levels between 50% and 100% FC. At 25% FC, neither seeding method performed well with fluid drilled seed being entrapped inside the carrier gel after it had dehydrated. After 2 wk, no significant difference in final percent emergence was noted between seeding treatments at any soil moisture level. In a second experiment, fluid drilled lettuce seeds emerged earlier and reached 50% emergence sooner than dry seed, germinated seed sown without gel and dry-seed in gel at 40%, 50% and 75% FC. Gel-seeded treatments were not significantly affected by soil moisture whereas the emergence of seeding treatments without gel application was markedly improved as soil moisture content increased. After 2 wk, the percent emergence of dry seeded lettuce at 40% FC was significantly lower than the other seeding treatments. No differences were noted among treatments at 50% FC whereas at 75% FC, the emergence of dry seed in gel was significantly reduced.Key words: Lettuce, fluid drilling


2015 ◽  
Vol 4 (3) ◽  
pp. 477-486 ◽  
Author(s):  
SALEH A. ALSUHAIBANI ◽  
Mohammed F. Wahby ◽  
Abdulwahed M. Aboukarima ◽  
Ibrahim S. Tabash

This study was conducted to study the effect of soil moisture content and plowingspeed of the implement on draft force of a moldboard plow (mounted-type). Three soil moisture content (5.08, 5.14 and 6.82 %db) and three plowing speed (2.67, 3.95 and 4.53 km/h) were investigated. The average tillage depth was 20 cm and the average soil bulk density was 1.73 g/cm3.The experiment was laid out in a randomized complete block design with two replications. The data collected were subjected to analysis of variance (ANOVA). Also, Least Significant Difference Test (LSD) at 5% probability was performed to compare the means of different treatments. The statistical results of the study indicated that soil moisture content and plowing speed significantly (P < 0.05) affected draft force. Draft force also decreased by increasing soil moisture content and increased by increasing plowing speed.


2016 ◽  
Vol 8 (4) ◽  
pp. 2093-2098
Author(s):  
Preet Pratima ◽  
N. Sharma ◽  
Rajesh Kaushal

The effect of deficit irrigation and in situ moisture conservation in kiwifruit cv. Allison vines was studied during the years 2011 and 2012 in the Department of Fruit Science, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, HP, India. Soil moisture content and frequency of irrigation were investigated in kiwifruit in response to deficit irrigation and in situ moisture conservation techniques. Seven treatments viz., irrigation at 80 per cent Field Capacity (T1), 60 per cent Field Capacity (T2) and 40 per cent Field Capacity (T3), 60 per cent Field Capacity (FC) plus grass mulch (T4) or black polythene (T5) and 40 per cent FC plus grass mulch (T6) or black polythene (T7) were applied from March to October with three replications in Randomized Block Design (RBD). During the year 2011, the soil moisture content under kiwifruit vines was highest under the treatment T1 (15.3, 16.9) , followed by T5 (15.2, 16.8) and T4 (14.9, 16.6) at 30 cm and at 60 cm soil depth, respectively. Whereas, during the year 2012, the soil moisture content under kiwifruit vines was highest under the treatment T1 (14.9, 16.4), followed by T5 (15.0, 16.3) and T4 (14.6, 16.1) at 30 cm and at 60 cm soil depth, respectively. However,the least soil moisture content was, however, observed under T3 (11.0, 12.8) at 30 cm and 60 cm soil depth , respectively, during the year 2011, similarly, during the year 2012, the least soil moisture content was also observed under T3 (10.6, 12.7) at 30 cm and 60 cm soil depth, respectively. The frequency of irrigation was highest under T1 (16 irrigations) followed T2 (10 irrigations) while the least was recorded under T6 and T7 (7irrigations). Total numbers of irrigations applied were reduced from 16 (under T1) to 8 (under T5). The use of black plastic mulch may be beneficial as it helped to conserve moistureunder DI regime which is comparable to those in well irrigated vines. It may also reduce the high irrigation requirement of kiwifruit in areas where sufficient water is not available.


2013 ◽  
Vol 742 ◽  
pp. 272-277
Author(s):  
Liang Shan Feng ◽  
Zhan Xiang Sun ◽  
Jia Ming Zheng

In this study, the results showed that water is the most important factor to affect crop yields and optimum soil moisture is lower under the conditions of peanut-and-millet interplanting. Thus, peanut-and-millet interplanting is generally able to fit most of the semi-arid region. In the interaction of various factors, the coupling effect of water and phosphorus was stronger than the coupling effect of fertilizers, following by the coupling effect of water and nitrogen. Among peanuts factors of water, nitrogen, and multi-factorial interaction of water, nitrogen, and phosphorus, water and nitrogen showed a negative effect, whereas the two-factor interactions had a positive effect. There were some differences between peanut and millet in the need for water and fertilizer, in which peanut required more nitrogen and millet needed slightly higher soil moisture and phosphorus. When other factors were in rich level, both of the optimal value for single factors of water, nitrogen, and phosphorus and the optimal value for two-factor interactions of water-nitrogen, water-phosphorus, and nitrogen-phosphorus, were higher than the optimal value for the interaction of water, nitrogen, and phosphorus. The tiny demand difference on moisture in peanut-millet interplanting could be compromised by configuring a reasonable interplanting population structure and the corresponding demand difference on fertilizer could be resolved by uneven crop planting strips. Under the condition of water-nitrogen-phosphorus interaction, the soil moisture content optimal for peanut accounted for 57.3% of the field capacity, and the related appropriate application rates of nitrogen and phosphorus were 0.98 g/pot (81.18 kg/hm2) and 0.39g/pot (32.18 kg/hm2), respectively. Likewise, the soil moisture content optimal for millet was 59.1% of the field capacity, and the counterpart appropriate application rates of nitrogen and phosphorus were 0.57 g/pot (47.03 kg/hm2) and 0.45g / pot (37.13 kg/hm2), respectively.


Author(s):  
Y. A. Unguwanrimi ◽  
A. M. Sada ◽  
G. N. Ugama ◽  
H. S. Garuba ◽  
A. Ugoani

Draft requirements of two animal – drawn (IAR) weeders operating on loam soil were determined in the study. The implements include a straddle row weeder and an emcot attached rotary weeder evaluated under the same soil conditions, using a pair of white Fulani breed of oxen. The animal draft requirement was first estimated from the animal ergonomics measurements. Using area of 0.054 hectare as experimental plot for each implement the draft requirement of each implement was investigated after taking soil samples for soil moisture content and bulk density determinations. The implements tested showed variation in their average draft requirement. The straddle row weeder had the highest value of 338.15 N respectively while the emcot attached rotary weeder had the lowest value of 188.12 N with 47.03%, respectively. The average soil moisture contents and bulk density were 13.0% and 1.46%/cm3, respectively.


1965 ◽  
Vol 45 (2) ◽  
pp. 171-176 ◽  
Author(s):  
J. C. Wilcox

Drainage curves following irrigation were determined at six depths in eight soils having unrestricted drainage but varying widely in soil texture. The field capacities were determined under relatively high rates of evapotranspiration. The time after irrigation that it was necessary to wait before sampling the soil, to determine field capacity, was also determined. A high positive correlation was obtained between the log of field capacity in inches and the log of time after irrigation at which to sample the soil. The time varied from about 0.5 day with 1.5 in. field capacity to 4.0 days with 35 in. From the curves of soil moisture content versus time, the errors caused by sampling too soon or too late were determined. The percentage error (i.e. percent of field capacity) increased with an increase in the error in time of sampling; it decreased with an increase in field capacity in inches; and it was greater when sampling was too soon than when it was too late.


1975 ◽  
Vol 51 (5) ◽  
pp. 196-199 ◽  
Author(s):  
R. J. Day ◽  
G. R. MacGillivray

The root regenerating potential of fall-lifted 2+0 white spruce nursery stock is described after transplanting into soil-maintained at 8, 10 and 15% soil moisture content (SMC) in glass fronted root boxes. At 15% SMC (0.1 bar soil moisture tension), which is close to field capacity, root regeneration began 10 days after transplanting and root elongation continued at a high rate for the remainder of a 40-day study period. At 10% SMC (0.6 bar SMT) root regeneration was delayed until 20 days after transplanting and root elongation was at a slower rate. At 8% SMC (1.5 bars) root regeneration and elongation was negligible. Plant moisture stress measured at 40 days was least when root regeneration was most and vice versa. The results suggest that field planting of white spruce in soils with moisture tensions of over 0.6 bar will be hazardous.


1966 ◽  
Vol 46 (3) ◽  
pp. 213-216 ◽  
Author(s):  
S. J. Bourget ◽  
B. J. Finn ◽  
B. K. Dow

Young seedlings of flax and cereals, grown in a greenhouse, were subjected to 0, 12.5, and 25.0 cm of soil moisture tension for periods of 7, 14, and 21 days The grain, straw, and root yields of all plant species, except barky, increased with increasing soil moisture content was maintained near field capacity during the growth of plants. The yields of oats, winter wheat, and fall rye decreased with increasing duration of flooding, whereas those of barley, flax and spring wheat were variable. Correlation coefficients between yields of tops and roots were positive.


Sign in / Sign up

Export Citation Format

Share Document