scholarly journals Wind Velocity as it Affects Body Temperature, Water Consumption and Feed Consumption During Heat Stress of Roosters

1971 ◽  
Vol 50 (5) ◽  
pp. 1535-1537 ◽  
Author(s):  
M.A. Boone ◽  
B.L. Hughes
Author(s):  
Aamir Iqbal ◽  
Abdul Qudoos ◽  
Ismail Bayram ◽  
O. Tytariova ◽  
V. Bomko ◽  
...  

This review includes an analysis of the literature on various influencing factors influencing heat stress in lactating dairy cows and the way it affects milk production. Signs and symptoms of heat stress in cows are reduced feed consumption and decreased milk yield, elevated breathing rate, increased body temperature and reduced reproductive overall performance. There are other problems for example, a seasonal growth in bulk tank somatic cell counts. The birth weight is decreased in cows which have been exposed to heat stress throughout the dry length. It is established that the most critical is the heat accumulated via direct radiation from the solar. It was found out that high feed consumption results in raised metabolic heat increment. High metabolic warmness increment requires powerful thermoregulatory mechanisms to maintain body temperature in a thermoneutral area and in physiological homeostasis. It is confirmed that heat stress is complicated because the responses to heat stress have an effect on not best the energy stability, but also water, sodium, potassium and chlorine metabolism. Plasma progesterone degrees may be elevated or reduced depending on whether or not the heat pressure is acute or chronic. Water, sodium, potassium and chlorine are vital constituents of sweat, and sweating is a chief, if not the most important, thermoregulatory mechanism used to burn up extra body heat. Strategies to reduce heat stress must be evolved to enable cows to express their full genetic ability. Key words: dairy cows, heat stress, thermoregulatory mechanism, water, feed consumption, mineral elements.


2021 ◽  
Vol 6 (2) ◽  
pp. 1-9
Author(s):  
Getachew Bekele

Heat stress is a situation where too much heat is absorbed by a person, a plant or an animal and causes stress, illness or even death. Therefore, the objective of this review was to compile current knowledge and evidence from literature about the effects of heat stress in poultry production, and productivities. Heat stress is manifested by elevated body temperature, hot, dry skin, lack of sweating and neurological symptoms such as paralysis, headache, vertigo and unconsciousness. Poultry seems to be particularly sensitive to temperature-associated environmental challenges, especially heat stress. In the first days of their life poultry need hot climate (32-38°C), but the optimal temperature decreases rapidly with age by 2.5-3.0°C per week. Birds may use sand baths to dissipate the heat from the body, move to a shaded area or seek a micro-environment that avoids extremely high environmental temperature. Birds rose in an open-sided house at 37°C and humidity level of 50-60% showed signs of panting and wing lifting, elevation of body temperature, lower feed consumption, a higher feed conversion ratio, and lowered body weight gain. In females, heat stress can disrupt the normal status of reproductive hormones at the hypothalamus and ovary leading to reduced systemic levels and functions. Also in males, semen volume, sperm concentration, number of live sperm cells and motility decrease when subjected to heat stress. In egg production, heat stress has a significant harmful impact on body weight, and feed consumption of laying hens at peak production, egg weight, shell weight, shell thickness, and gravity. Both meat type and egg laying chickens respond negatively to high ambient temperatures. Heat stress reduces the relative weights of lymphoid organs like spleen, thymus and cloacae bursa.


2021 ◽  
pp. 1971-1976
Author(s):  
Ujang Suryadi ◽  
Erfan Kustiawan ◽  
Anang Febri Prasetyo ◽  
Shokhirul Imam

Background and Aim: The open house cage is mainly influenced by the environmental heat from the sun and the heat released by the chicken. Heat stress can affect physiological conditions so that it has an impact on decreasing productivity. This study aims to determine the effect of agarwood leaf extract in feed on the physiological condition and production performance of broilers experiencing heat stress and to generate prediction equations for the optimal level of the extract in feed. Materials and Methods: A total of 200 22-day-old broilers (Cobb 500™) underwent four treatments with five replications each, namely, feed without agarwood leaf extract (control) (T0), and feed with 250 (T1), 300 (T2), and 350 mg of agarwood leaf extract/kg body weight (T3). The parameters observed include physiological condition (heart rate, respiratory frequency, and body temperature) as well as production performance (feed consumption, body weight gain [BWG], and feed conversion). Results: The administration of agarwood leaf extract significantly (p<0.05) decreased heart rate and respiratory frequency. However, there was no significant difference (p>0.05) in body temperature, glucose levels, hemoglobin and erythrocyte concentrations, as well as production performance which include weight gain, feed consumption, and feed conversion ratio. Meanwhile, broilers treated with agarwood leaf extract had a significantly lower heart rate and respiratory frequency (p<0.05) compared to the control. However, broilers given agarwood leaf extract showed better body weight, consumption, and ration conversion compared to the control. Conclusion: Agarwood leaf extract in feed reduces heart rate and respiratory frequency but has no significant effect on body temperature and hematological parameters (glucose levels, hemoglobin, and erythrocyte concentrations) as well as production performance (feed consumption, weight gain, and feed conversion). These results indicate that the administration of 350 mg/kg body weight agarwood leaf extract is most effective to reduce feed consumption and increase BWG.


2012 ◽  
Vol 47 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Masaki Iguchi ◽  
Andrew E. Littmann ◽  
Shuo-Hsiu Chang ◽  
Lydia A. Wester ◽  
Jane S. Knipper ◽  
...  

Context: Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. Objective: To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extra-cellular protein responses of exercise. Design: Randomized controlled trial. Setting: University research laboratory. Patients or Other Participants: Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Intervention(s): Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Main Outcome Measure(s): Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. Results: After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F6,24 = 186, P &lt; .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F6,24 = 10.1, P &lt; .001) and 5 mm Hg (F6,24 = 5.4, P &lt; .001), respectively. Norepinephrine (F1,12 = 12.1, P = .004) and prolactin (F1,12 = 30.2, P &lt; .001) increased in the plasma (58% and 285%, respectively) (P &lt; .05). The HSP72 (F1,12 = 44.7, P &lt; .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. Conclusions: We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether carefully prescribed heat stress constitutes a method to augment or supplement exercise.


1967 ◽  
Vol 7 (26) ◽  
pp. 217 ◽  
Author(s):  
MJT Norman

The liveweight performance and carcase characteristics of Brahman x Hereford, Africander x Hereford and Africander x Shorthorn F, crossbred spayed heifers were compared with those of local Shorthorn spayed heifers on native pasture at Katherine, N.T., between 1962 and 1965. The breed groups were divided for planes of winter nutrition, viz., with and without 2 lb a day of peanut meal from early June until the start of the wet season. Without supplement, the average weight gains of B x H, A x H, A x S, and Shorthorn cattle between June 1962 and May 1965 were 0.49, 0.37, 0.36, and 0.23 lb a day respectively. With supplement, cattle reached slaughter weight a year earlier ; the average weight gains of B x H, A x H, and Shorthorn cattle between June 1962 and May 1964 were 0.61, 0.63, and 0.50 lb a day respectively. (There was no A x S supplemented group). Without supplement, the dressing percentage and estimated proportion of fat of B x H cattle was higher and the estimated proportion of muscle and bone lower than those of other breeds. With supplement, there were no significant differences in dressing percentage or carcase composition between breeds. Measurements made of thermoregulatory attributes indicated that the local Shorthorn cattle, through body temperature control, showed adaptation to heat stress.


2013 ◽  
Vol 45 (8) ◽  
pp. 1691-1696 ◽  
Author(s):  
Rosita Denny Romero ◽  
Arnulfo Montero Pardo ◽  
Hugo Horacio Montaldo ◽  
Ana Delia Rodríguez ◽  
Joel Hernández Cerón

Sign in / Sign up

Export Citation Format

Share Document