Archaeal Cell Envelope and Surface Structures

2016 ◽  
2016 ◽  
Vol 6 ◽  
Author(s):  
Mechthild Pohlschroder ◽  
Sonja-Verena Albers

Archaea ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Albert F. Ellen ◽  
Behnam Zolghadr ◽  
Arnold M. J. Driessen ◽  
Sonja-Verena Albers

Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface structures, and the release of S-layer-coated vesicles from the archaeal membrane.


2021 ◽  
Author(s):  
Marco Herfurth ◽  
Anke Treuner-Lange ◽  
Timo Glatter ◽  
Nadine Wittmaack ◽  
Egbert Hoiczyk ◽  
...  

Type IVa pili (T4aP) are versatile bacterial cell surface structures that undergo extension/adhesion/retraction cycles powered by the cell envelope-spanning T4aP machine. In this machine, a complex composed of four minor pilins and PilY1 primes T4aP extension and is also present at the pilus tip mediating adhesion. Similar to many other bacteria, Myxococcus xanthus contains multiple minor pilins/PilY1 sets that are incompletely understood. Here, we report that minor pilins and PilY1 (PilY1.1) of cluster_1 form priming and tip complexes contingent on a non-canonical cytochrome c (TfcP) with an unusual His/Cys heme ligation and calcium. We provide evidence that TfcP is unlikely to participate in electron transport and has been repurposed to promote calcium binding by PilY1.1 at low calcium concentrations, thereby stabilising PilY1.1 and enabling T4aP function in a broader range of calcium concentrations. These results identify a novel function of cytochromes c and illustrate how incorporating an accessory factor expands the environmental range under which the T4aP system functions.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
Tokio Nei ◽  
Haruo Yotsumoto ◽  
Yoichi Hasegawa ◽  
Yuji Nagasawa

In order to observe biological specimens in their native state, that is, still containing their water content, various methods of specimen preparation have been used, the principal two of which are the chamber method and the freeze method.Using its recently developed cold stage for installation in the pre-evacuation chamber of a scanning electron microscope, we have succeeded in directly observing a biological specimen in its frozen state without the need for such conventional specimen preparation techniques as drying and metallic vacuum evaporation. (Echlin, too, has reported on the observation of surface structures using the same freeze method.)In the experiment referred to herein, a small sliced specimen was place in the specimen holder. After it was rapidly frozen by freon cooled with liquid nitrogen, it was inserted into the cold stage of the specimen chamber.


Author(s):  
N.J. Tao ◽  
J.A. DeRose ◽  
P.I. Oden ◽  
S.M. Lindsay

Clemmer and Beebe have pointed out that surface structures on graphite substrates can be misinterpreted as biopolymer images in STM experiments. We have been using electrochemical methods to react DNA fragments onto gold electrodes for STM and AFM imaging. The adsorbates produced in this way are only homogeneous in special circumstances. Searching an inhomogeneous substrate for ‘desired’ images limits the value of the data. Here, we report on a reversible method for imaging adsorbates. The molecules can be lifted onto and off the substrate during imaging. This leaves no doubt about the validity or statistical significance of the images. Furthermore, environmental effects (such as changes in electrolyte or surface charge) can be investigated easily.


Author(s):  
R. L. Hines

The importance of atom layer terraces or steps on platinum surfaces used for catalysis as discussed by Somorjai justifies an extensive investigation of the structure of platinum surfaces through electron microscopy at the atomic resolution level. Experimental and theoretical difficulties complicate the quantitative determination of platinum surface structures but qualitative observation of surface structures on platinum crystals is now possible with good experimental facilities.Ultrathin platinum crystals with nominal 111 orientation are prepared using the procedure reported by Hines without the application of a carbon backing layer. Platinum films with thicknesses of about ten atom layers are strong enough so that they can be mounted on grids to provide ultrathin platinum crystals for examination of surface structure. Crystals as thin as possible are desired to minimize the theoretical difficulties in analyzing image contrast to determine structure. With the current preparation procedures the crystals frequently cover complete openings on a 400 mesh grid.


Author(s):  
Mary Beth Downs ◽  
Wilson Ribot ◽  
Joseph W. Farchaus

Many bacteria possess surface layers (S-layers) that consist of a two-dimensional protein lattice external to the cell envelope. These S-layer arrays are usually composed of a single species of protein or glycoprotein and are not covalently linked to the underlying cell wall. When removed from the cell, S-layer proteins often reassemble into a lattice identical to that found on the cell, even without supporting cell wall fragments. S-layers exist at the interface between the cell and its environment and probably serve as molecular sieves that exclude destructive macromolecules while allowing passage of small nutrients and secreted proteins. Some S-layers are refractory to ingestion by macrophages and, generally, bacteria are more virulent when S-layers are present.When grown in rich medium under aerobic conditions, B. anthracis strain Delta Sterne-1 secretes large amounts of a proteinaceous extractable antigen 1 (EA1) into the growth medium. Immunocytochemistry with rabbit polyclonal anti-EAl antibody made against the secreted protein and gold-conjugated goat anti-rabbit IgG showed that EAI was localized at the cell surface (fig 1), which suggests its role as an S-layer protein.


Author(s):  
C. W. Price ◽  
E. F. Lindsey ◽  
R. M. Franks ◽  
M. A. Lane

Diamond-point turning is an efficient technique for machining low-density polystyrene foam, and the surface finish can be substantially improved by grinding. However, both diamond-point turning and grinding tend to tear and fracture cell walls and leave asperities formed by agglomerations of fragmented cell walls. Vibratoming is proving to be an excellent technique to form planar surfaces in polystyrene, and the machining characteristics of vibratoming and diamond-point turning are compared.Our work has demonstrated that proper evaluation of surface structures in low density polystyrene foam requires stereoscopic examinations; tilts of + and − 3 1/2 degrees were used for the stereo pairs. Coating does not seriously distort low-density polystyrene foam. Therefore, the specimens were gold-palladium coated and examined in a Hitachi S-800 FESEM at 5 kV.


2020 ◽  
Author(s):  
Silvia Acosta Gutiérrez ◽  
Igor Bodrenko ◽  
Matteo Ceccarelli

The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (75%) between the two, confirming porins key role in compound penetration. Further, the remarkable prediction ability of the scoring function demonstrates its potentiality to guide the optimization of hits to leads as well as the possibility of screening ultra-large virtual libraries. Eventually, the analysis of false positives, molecules with high-predicted influx but low accumulation, provides new hints on the molecular properties behind efflux.<br>


Sign in / Sign up

Export Citation Format

Share Document