Permeability Through Bacterial Porins Dictates Whole Cell Compound Accumulation

Author(s):  
Silvia Acosta Gutiérrez ◽  
Igor Bodrenko ◽  
Matteo Ceccarelli

The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (75%) between the two, confirming porins key role in compound penetration. Further, the remarkable prediction ability of the scoring function demonstrates its potentiality to guide the optimization of hits to leads as well as the possibility of screening ultra-large virtual libraries. Eventually, the analysis of false positives, molecules with high-predicted influx but low accumulation, provides new hints on the molecular properties behind efflux.<br>

Author(s):  
Silvia Acosta Gutiérrez ◽  
Igor Bodrenko ◽  
Matteo Ceccarelli

The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (75%) between the two, confirming porins key role in compound penetration. Further, the remarkable prediction ability of the scoring function demonstrates its potentiality to guide the optimization of hits to leads as well as the possibility of screening ultra-large virtual libraries. Eventually, the analysis of false positives, molecules with high-predicted influx but low accumulation, provides new hints on the molecular properties behind efflux.<br>


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 635
Author(s):  
Silvia Acosta-Gutiérrez ◽  
Igor V. Bodrenko ◽  
Matteo Ceccarelli

The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to their targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (74%) between the two, confirming porins key in compound uptake in Gram-negative bacteria. The analysis of this unique dataset aids to better understand the molecular descriptors behind whole-cell accumulation and molecular uptake in Gram-negative bacteria.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Yoshiyuki Yamada ◽  
Thomas Dick

ABSTRACT With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition. The mycobacterial caseinolytic protease ClpP1P2 is a degradative protease that recently gained interest as a genetically and pharmacologically validated drug target for tuberculosis. The first whole-cell active ClpP1P2 inhibitor, the human proteasome inhibitor bortezomib, is currently undergoing lead optimization to introduce selectivity for the bacterial target. How inhibition of ClpP1P2 translates into whole-cell antimicrobial activity is little understood. Previous work has shown that the caseinolytic protease gene regulator ClgR is an activator of the clpP1P2 genes and also suggested that this transcription factor may be a substrate of the protease. Here, we employ promoter activity reporters and direct mRNA level measurements showing that bortezomib treatment of Mycobacterium bovis BCG increased transcription of clpP1P2 and other ClgR-dependent promoters, suggesting that inhibition of ClpP1P2 increases cellular ClgR levels. Then, we carried out red fluorescent protein-ClgR fusion analyses to show that ClgR is indeed a substrate of ClpP1P2 and to identify ClgR’s C-terminal nonapeptide APVVSLAVA as the signal sufficient for recognition and efficient protein degradation by ClpP1P2. Interestingly, accumulation of ClgR appears to be toxic for bacilli, suggesting a mechanism for how pharmacological inhibition of ClpP1P2 protease activity by bortezomib translates into whole-cell antibacterial activity. IMPORTANCE With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition.


Planta Medica ◽  
2018 ◽  
Vol 85 (07) ◽  
pp. 563-569 ◽  
Author(s):  
Zhiyong Lei ◽  
Zhijian Cao ◽  
Zaiwang Yang ◽  
Mingzhang Ao ◽  
Wenwen Jin ◽  
...  

AbstractPoor wound healing is a major and global threat to public health. Efforts have been made to better understand the underlying mechanisms and develop effective remedies, though the advancements that have been made are still limited. As there are no effective and generally applicable therapies available for skin injuries and fibrosis, it is urgent to develop new drugs and therapies that facilitate wound healing and effectively improve scars. In this study, GC-MS analysis was performed to identify the chemical composition of rosehip oil. The excisional wound healing model and the carrageenan-induced paw edema method were respectively applied to evaluate the wound healing activity and anti-inflammatory activity of rosehip oil. Hematoxylin and eosin staining was used to assess the pathological changes of sections, and Sirius-red staining was performed to analyze the ratio of collagen I/III in wound tissues. Immunohistological staining for CD68, CCR7 (CD197), CD163, TGF-β1, and α-SMA was applied to determine the macrophage phenotypes transition (M1-to-M2) and demonstrate the scar-improving efficacy of rosehip oil on wound healing. Results showed that rosehip oil significantly promoted wound healing and effectively improved scars. This efficacy might be exerted by accelerating the macrophage phenotypes transition and inhibiting the process of epithelial-mesenchymal transition.


2021 ◽  
Vol 28 ◽  
Author(s):  
Patrick Müller ◽  
Hannah Maus ◽  
Stefan Josef Hammerschmidt ◽  
Philip Knaff ◽  
Volker Mailänder ◽  
...  

: Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since currently, there is no causative drug against this viral infection available, science is striving for new drugs and approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARS-CoV-2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.


2021 ◽  
Author(s):  
Salima Akter ◽  
Mohammad Nazmul Hasan ◽  
Begum Rokeya ◽  
Hajara Akhter ◽  
Mohammad Shamim Gazi ◽  
...  

Alternative medicine has renewed its growing public interest in recent times due to inequality of patients and healthcare professionals’ ratios with increased workload for the latter, various side effects of modern medicine, lack of complete remission from chronic diseases, high cost of new drugs, and emerging new diseases. Hence, people have become more dependent on treatment systems replying on alternative medicine or herbal medicine from traditional medicinal practitioners. Alternative medicine has grown substantially over time and encompasses several millennia of therapeutic systems. The significant areas of alternative medicine include mind–body therapies, body manipulation, and the therapies based on biological systems. Natural products based biological treatment is the most popular of them as nature has endowed us with abundance of effective pharmacologically active phytochemicals. These phytochemicals possess numerous specific clinical health benefits including antioxidant, antidiabetic, anti-inflammatory, anticancer, anti-infectious and analgesic effects. In addition, alternative medicine is easily accessible, affordable, most often noninvasive, and provides favorable benefits during terminal periods of some diseases. However, due to the lack of well-designed clinical trials, the safety and effectiveness of many alternative medicines/therapies remains elusive. This chapter will critically discuss major areas, uses, safety and regulation, current challenges & future perspectives of alternative medicine.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3314 ◽  
Author(s):  
Negash ◽  
Norris ◽  
Hodgkinson

Antibiotic resistance is a global health concern and a current threat to modern medicine and society. New strategies for antibiotic drug design and delivery offer a glimmer of hope in a currently limited pipeline of new antibiotics. One strategy involves conjugating iron-chelating microbial siderophores to an antibiotic or antimicrobial agent to enhance uptake and antibacterial potency. Cefiderocol (S-649266) is a promising cephalosporin–catechol conjugate currently in phase III clinical trials that utilizes iron-mediated active transport and demonstrates enhanced potency against multi-drug resistant (MDR) Gram-negative pathogens. Such molecules demonstrate that siderophore–antibiotic conjugates could be important future medicines to add to our antibiotic arsenal. This review is written in the context of the chemical design of siderophore–antibiotic conjugates focusing on the differing siderophore, linker, and antibiotic components that make up conjugates. We selected chemically distinct siderophore–antibiotic conjugates as exemplary conjugates, rather than multiple analogues, to highlight findings to date. The review should offer a general guide to the uninitiated in the molecular design of siderophore–antibiotic conjugates.


2003 ◽  
Vol 67 (4) ◽  
pp. 491-502 ◽  
Author(s):  
Gary Strobel ◽  
Bryn Daisy

SUMMARY Endophytic microorganisms are to be found in virtually every plant on earth. These organisms reside in the living tissues of the host plant and do so in a variety of relationships, ranging from symbiotic to slightly pathogenic. Because of what appears to be their contribution to the host plant, the endophytes may produce a plethora of substances of potential use to modern medicine, agriculture, and industry. Novel antibiotics, antimycotics, immunosuppressants, and anticancer compounds are only a few examples of what has been found after the isolation, culture, purification, and characterization of some choice endophytes in the recent past. The potential prospects of finding new drugs that may be effective candidates for treating newly developing diseases in humans, plants, and animals are great.


Sign in / Sign up

Export Citation Format

Share Document