scholarly journals Low Energy Laser Treatments Control Annual Ryegrass (Lolium rigidum)

2021 ◽  
Vol 2 ◽  
Author(s):  
Guy Coleman ◽  
Christopher Betters ◽  
Caleb Squires ◽  
Sergio Leon-Saval ◽  
Michael Walsh

Increasing concern for the ongoing availability and efficacy of herbicides is driving interest in the development of alternative physical and thermal weed control methods. Fortunately, improvements in weed detection through advancements in computing hardware and deep learning algorithms are creating an opportunity to use novel weed control tools, such as lasers, in large-scale cropping systems. For alternative control options, there are two key weed control timing opportunities, early and late post-crop emergence. Weed density for the early timing is typically higher, with a shorter window for control. Conversely, late post-emergent treatment of surviving and late-emerging weeds would occur in lower densities of larger and more variably sized weeds, given a prior weed control effort, but with a longer available weed control period. Research in laser weeding to date has primarily focused on early growth stage weeds and the ability of this approach to control larger weeds remains unknown. This study used a 25 W, 975 nm fiber-coupled diode laser to evaluate the opportunity for control of annual ryegrass (Lolium rigidum Gaudin) and the influence of four different growth stages (three-leaf, seven-leaf, mid-tillering, and late-tillering). Annual ryegrass plants at each growth stage were treated using a laser-focused to a 5 mm diameter with five different irradiation durations developing energy densities of 1.3, 2.5, 6.4, 19.1, and 76.4 J mm−2. At the three-leaf stage, all plants were controlled at 76.4 J mm−2 and 93.3% controlled at 19.1 J mm−2. Complete control of seven-leaf plants was only achieved at 76.4 J mm−2. Although laser treatments did not control mid-tillering stage plants, 76.4 J mm−2 reduced biomass by 60.2%. No similar reductions in biomass were recorded for the largest plants. This initial research assists in the development of novel weed control options in the context of large-scale conservation cropping systems. Future research should investigate the influence of laser treatments on additional weed species and the impact of increased laser power on larger weeds.

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1879
Author(s):  
Martina Badano Perez ◽  
Hugh J. Beckie ◽  
Gregory R. Cawthray ◽  
Danica E. Goggin ◽  
Roberto Busi

Overreliance on herbicides for weed control is conducive to the evolution of herbicide resistance. Lolium rigidum (annual ryegrass) is a species that is prone to evolve resistance to a wide range of herbicide modes of action. Rapid detection of herbicide-resistant weed populations in the field can aid farmers to optimize the use of effective herbicides for their control. The feasibility and utility of a rapid 7-d agar-based assay to reliably detect L. rigidum resistant to key pre- and post-emergence herbicides including clethodim, glyphosate, pyroxasulfone and trifluralin were investigated in three phases: correlation with traditional pot-based dose-response assays, effect of seed dormancy, and stability of herbicides in agar. Easy-to-interpret results were obtained using non-dormant seeds from susceptible and resistant populations, and resistance was detected similarly as pot-based assays. However, the test is not suitable for trifluralin because of instability in agar as measured over a 10-d period, as well as freshly-harvested seeds due to primary dormancy. This study demonstrates the utility of a portable and rapid assay that allows for on-farm testing of clethodim, glyphosate, and pyroxasulfone resistance in L. rigidum, thereby aiding the identification and implementation of effective herbicide control options.


1991 ◽  
Vol 5 (1) ◽  
pp. 221-228 ◽  
Author(s):  
George W. Mueller-Warrant

Access to detailed descriptions of the effects of applying specific rates of herbicides to crops and weeds in various growth stages is hampered by the format in which the relevant information is stored. Compared to traditional formats of journal articles and herbicide registration labels, computer database systems could easily cross-reference data from large numbers of experiments and answer specific questions concerning herbicide performance under particular conditions. Availability of this type of information could have far-reaching consequences for herbicide users, consultants, researchers, and regulators. A preliminary format for storing weed control information in IBM-PC compatible computers was developed, including procedures to enter data and retrieve information. Weed control efficacy or crop injury data for all rates of a herbicide or tank-mixture applied at a specific growth stage in a single test are used to generate dose/response equations by means of regression analysis routines. The best fitting of these equations is then used to estimate herbicide rates that would provide ten categories of control, ranging from a “no observable effect level” (NOEL) up to complete control. Rates are estimated only for those categories either within or bordering the range of the observed data, the remaining categories are empty. The estimated rates are stored in the database, along with the original data and other qualifying information. Access to information is organized around searches for a single herbicide, plant species, or pair of species. Search output is presented in a tabular format listing species, growth stage, herbicide name, and herbicide rates for the ten categories: NOEL, 10, 30, 50, 70, 83, 90, 95, 98, and 100% control or injury.


2013 ◽  
Vol 64 (7) ◽  
pp. 708 ◽  
Author(s):  
Deirdre Lemerle ◽  
Peter Lockley ◽  
Eric Koetz ◽  
Simon Diffey

Conservation cropping systems with no-till and stubble retention improve soil condition and water conservation. However, tillage is replaced by herbicides for weed control in these systems, increasing the threat of herbicide resistance. In the medium to high rainfall zones of the southern wheatbelt of Australia and under irrigation, wider row spacing is used to enable seeding into heavy stubble loads and to avoid stubble burning. Some evidence suggests that wider rows lead to reduced crop competitive ability and crop yields, greater herbicide dependence, and increased spread of resistance. Our aim was to test the hypothesis that increasing seeding rate compensated for reduced competitive ability at wider row spacings, especially when herbicide performance was suboptimal. We examined the impact of two wheat row spacings (18 and 36 cm) and five seeding rates (resulting in a range of densities of ~80–700 plants/m2) on control of Lolium rigidum with five rates of post-emergence application of diclofop-methyl (Hoegrass®), ranging from label rate to lower rates, over two growing seasons. In the presence of L. rigidum, wheat grain yield was unaffected by row spacing but was significantly reduced at low seeding rates, especially at lower herbicide rates. Lolium rigidum was suppressed at higher crop densities but was also unaffected by row spacing. Grain yield was maximised when post-emergence herbicide was applied at 60–100% of the recommended dose at wheat densities >~300 plants/m2. Significant levels of the weed remained in the crop at anthesis in all treatments. Weed dry matter ranged from 525 g/m2 at low crop densities and with no herbicide to 150 g/m2 with the recommended rate of herbicide and high wheat densities. The implications of manipulating crop competitive ability to improve weed control are discussed, especially in conditions where herbicide performance is unreliable due to weeds developing herbicide resistance or adverse environmental conditions.


2007 ◽  
Vol 58 (3) ◽  
pp. 265 ◽  
Author(s):  
Catherine P. Borger ◽  
Abul Hashem

Applying glyphosate followed by a mixture of paraquat + diquat in the same season for pre-planting weed control may reduce the risk of developing resistance to either herbicide. Glasshouse and field experiments at Merredin and Beverly, Western Australia, were conducted over 2 seasons to determine the best herbicide application sequence, growth stage of annual ryegrass at which to apply the 2 herbicides, and application time and interval to be allowed between applications for optimum control of annual ryegrass (Lolium rigidum Gaud.). Annual ryegrass plants were treated at 3 growth stages with either glyphosate 540 g a.i./ha alone, paraquat + diquat 250 g a.i./ha alone, glyphosate followed by paraquat + diquat 250 g a.i./ha, or paraquat + diquat 250 g a.i./ha followed by glyphosate 540 g a.i./ha (the double knockdown treatment). The herbicides were applied at different times of the day, with varied intervals between herbicides when applied in sequence. The glasshouse experiment showed that herbicides in sequence more effectively killed annual ryegrass plants at the 3–6-leaf stage than a single application of either herbicide. Field experiments showed that applying glyphosate followed by paraquat + diquat provided 98–100% control of annual ryegrass plants when applied at the 3- or 6-leaf stage in 2002 and at all 3 growth stages in 2003. Generally, the sequence of paraquat + diquat followed by glyphosate was less effective than the reverse sequence, although the difference was not large. Averaged over 2 seasons, herbicides in sequence were most effective when the first herbicide was applied at the 3- or 6-leaf stage of annual ryegrass. An interval of 2–10 days between applications of herbicides was more effective than 1 day or less. The application time did not significantly affect the efficacy of double knockdown herbicides on annual ryegrass plants under field conditions.


2018 ◽  
Vol 115 (16) ◽  
pp. 4045-4050 ◽  
Author(s):  
Yongcun Zhao ◽  
Meiyan Wang ◽  
Shuijin Hu ◽  
Xudong Zhang ◽  
Zhu Ouyang ◽  
...  

China’s croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0–20 cm) increased from 28.6 Mg C ha−1 in 1980 to 32.9 Mg C ha−1 in 2011, representing a net increase of 140 kg C ha−1 year−1. However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.


1996 ◽  
Vol 76 (2) ◽  
pp. 383-386 ◽  
Author(s):  
Nathalie Samson ◽  
Anne Légère ◽  
Romain Rioux

The need for yearly applications of non-selective and postemergence herbicides was evaluated in zero-tillage barley cropping systems in eastern Québec. The effects of six glyphosate treatments, fall-applied, at several rates and frequencies, and four postemergence herbicide treatments, on weed populations and crop yields, were measured over 2 yr in a zero-tillage spring barley monoculture. Yearly fall applications of glyphosate at rates at or above 0.5 kg a.i. ha−1 combined with postemergence herbicide treatments controlled most weed groups and provided optimum barley yields. Key words: Zero-tillage, no-till, conservation tillage, weed control, barley


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1505
Author(s):  
Ali Ahsan Bajwa ◽  
Sajid Latif ◽  
Catherine Borger ◽  
Nadeem Iqbal ◽  
Md Asaduzzaman ◽  
...  

Annual ryegrass (Lolium rigidum Gaud.), traditionally utilised as a pasture species, has become the most problematic and difficult-to-control weed across grain production regions in Australia. Annual ryegrass has been favoured by the adoption of conservation tillage systems due to its genetic diversity, prolific seed production, widespread dispersal, flexible germination requirements and competitive growth habit. The widespread evolution of herbicide resistance in annual ryegrass has made its management within these systems extremely difficult. The negative impacts of this weed on grain production systems result in annual revenue losses exceeding $93 million (AUD) for Australian grain growers. No single method of management provides effective and enduring control hence the need of integrated weed management programs is widely accepted and practiced in Australian cropping. Although annual ryegrass is an extensively researched weed, a comprehensive review of the biology and management of this weed in conservation cropping systems has not been conducted. This review presents an up-to-date account of knowledge on the biology, ecology and management of annual ryegrass in an Australian context. This comprehensive account provides pragmatic information for further research and suitable management of annual ryegrass.


2015 ◽  
Vol 66 (9) ◽  
pp. 930
Author(s):  
Michael B. Ashworth ◽  
Michael J. Walsh ◽  
Ken C. Flower ◽  
Stephen B. Powles

Transgenic glyphosate-resistant canola was first commercially grown in Western Australia (WA) in 2010, providing an opportunity to obtain important baseline data regarding the level of glyphosate resistance in weeds following the exclusive use of glyphosate for in-crop weed control. In this study, two surveys (2010 and 2011) were conducted across the 14 Mha of the grainbelt of WA. The 2010 survey was carried out at the late-flowering stage of glyphosate-resistant canola, whereas the 2011 survey was conducted at an earlier growth stage (6–8 leaves), ~2–3 weeks after the second in-crop glyphosate application. During the surveys, 239 fields were visited, representing an estimated combined area of 24 000 ha. The 2011 survey alone represented a subsample of 23% of the total glyphosate-resistant canola planting in the WA grainbelt for that season. Glyphosate resistance was identified in one population of wild radish (Raphanus raphanistrum L.) and in eight annual ryegrass (Lolium rigidum L.) populations. None of the tested capeweed (Arctotheca calendula (L.) Levyns) populations were glyphosate-resistant. In this survey, no populations of barley grass (Hordeum spp.), brome grass (Bromus spp.), wild oat (Avena spp.) or small-flowered mallow (Malva parviflora L.) survived glyphosate application. Despite a long history of pre-seeding and fallow glyphosate use in WA, this survey found that glyphosate still provides excellent in-crop control of most species; however, some resistance is evident, requiring diverse weed control techniques to limit their spread.


2020 ◽  
Vol 34 (5) ◽  
pp. 704-710
Author(s):  
Michael J. Walsh ◽  
Caleb C. Squires ◽  
Guy R. Y. Coleman ◽  
Michael J. Widderick ◽  
Adam B. McKiernan ◽  
...  

AbstractAustralian conservation cropping systems are practiced on very large farms (approximately 3,000 ha) where herbicides are relied on for effective and timely weed control. In many fields, though, there are low weed densities (e.g., <1.0 plant 10 m−2) and whole-field herbicide treatments are wasteful. For fallow weed control, commercially available weed detection systems provide the opportunity for site-specific herbicide treatments, removing the need for whole-field treatment of fallow fields with low weed densities. Concern about the sustainability of herbicide-reliant weed management systems remain and there has not been interest in the use of weed detection systems for alternative weed control technologies, such as targeted tillage. In this paper, we discuss the use of a targeted tillage technique for site-specific weed control in large-scale crop production systems. Three small-scale prototypes were used for engineering and weed control efficacy testing across a range of species and growth stages. With confidence established in the design approach and a demonstrated 100% weed-control potential, a 6-m wide pre-commercial prototype, the “Weed Chipper,” was built incorporating commercially available weed-detection cameras for practical field-scale evaluation. This testing confirmed very high (90%) weed control efficacies and associated low levels (1.8%) of soil disturbance where the weed density was fewer than 1.0 plant 10 m−2 in a commercial fallow. These data established the suitability of this mechanical approach to weed control for conservation cropping systems. The development of targeted tillage for fallow weed control represents the introduction of site-specific, nonchemical weed control for conservation cropping systems.


Sign in / Sign up

Export Citation Format

Share Document