scholarly journals Red Yeast Improves the Potential Safe Utilization of Solid Waste (Phosphogypsum and Titanogypsum) Through Bioleaching

Author(s):  
Haoming Chen ◽  
Yuqi Lu ◽  
Chaonan Zhang ◽  
Fangfang Min ◽  
Zongli Huo

Phosphogypsum (PG) and titanium gypsum (TG), as a by-product (solid waste) in phosphate fertilizer and titanium dioxide industry, are causing serious environmental hazards. The resource/harmless application of PG and TG is the development trend in the future. The biological function of red yeast (Rho: Rhodotorula mucilaginosa) can effectively reduce the concentration of pollutants in the environment and has the potential of biological flotation/purification of mineral solid waste. In this study, the bioremediation mechanism and safe utilization efficiency of Rho for different contents of PG and TG were explored by using its biological flotation function. The X-ray fluorescence spectrometry (XRF) results showed that F was the main toxic element in PG and TG, and Pb and Cd did not reach the detection limit. The processing capacity of Rho for PG (>10 g/ml) is higher than that of TG (<5 g/ml). After bioleaching by Rho, the proportion of F in PG and TG solid decreased by 61.45–63.79% and 49.45–59.19%, respectively. The results of three-dimensional fluorescence, extracellular polymeric substance (EPS) extraction, X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed that Rho could accelerate the release of harmful elements (F) in PG and TG. SEM showed that Rho cells and secretions adhered and wrapped on PG/TG, causing PG/TG decomposition and fragmentation. In addition, the adsorption of EPS and the formation of Ca5(PO4)3F are two main ways for Rho to remove F. Furthermore, under the condition of high concentration bioleaching, Rho can accelerate the release and utilization of P in PG, which is not only for the re-precipitation of Ca5(PO4)3F but also conducive to the reproduction and utilization of microorganisms. Meanwhile, the purification/safe reuse of PG by Rho is easier than that of TG. Therefore, the toxicity of PG and TG bioleaching by Rho can be greatly reduced, suggesting the huge potential of Rho in soil improvement and remediation.

Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
Daniel C. Pease

A previous study demonstrated that tissue could be successfully infiltrated with 50% glutaraldehyde, and then subsequently polymerized with urea to create an embedment which retained cytomembrane lipids in sectioned material. As a result, the 180-190 Å periodicity characteristic of fresh, mammalian myelin was preserved in sections, as was a brilliant birefringence, and the capacity to bind OsO4 vapor in the hydrophobic bilayers. An associated (unpublished) study, carried out in co-operation with Drs. C.K. Akers and D.F. Parsons, demonstrated that the high concentration of glutaraldehyde (and urea) did not significantly alter the X-ray diffraction pattern of aldehyde-fixed, myelin. Thus, by itself, 50% glutaraldehyde has little effect upon cytomembrane systems and can be used with confidence for the first stages of dehydration.


2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


2020 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
Guozhen Zhang ◽  
Xingxing Huang ◽  
Jinye Ma ◽  
Fuping Wu ◽  
Tianhong Zhou

Electrochemical oxidation technology is an effective technique to treat high-concentration wastewater, which can directly oxidize refractory pollutants into simple inorganic compounds such as H2O and CO2. In this work, two-dimensionally stable anodes, Ti/RuO2-IrO2-SnO2, have been developed in order to degrade organic pollutants from pharmaceutical wastewater. Characterization by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) showed that the oxide coating was successfully fabricated on the Ti plate surface. Electrocatalytic oxidation conditions of high concentration pharmaceutical wastewater was discussed and optimized, and the best results showed that the COD removal rate was 95.92% with the energy consumption was 58.09 kW·h/kgCOD under the electrode distance of 3 cm, current density of 8 mA/cm2, initial pH of 2, and air flow of 18 L/min.


Author(s):  
Ke Guo ◽  
Shaoyan Wang ◽  
Renfeng Song ◽  
Zhiqiang Zhang

AbstractLeaching titaniferous magnetite concentrate with alkali solution of high concentration under high temperature and high pressure was utilized to improve the grade of iron in iron concentrate and the grade of TiO2 in titanium tailings. The titaniferous magnetite concentrate in use contained 12.67% TiO2 and 54.01% Fe. The thermodynamics of the possible reactions and the kinetics of leaching process were analyzed. It was found that decomposing FeTiO3 with NaOH aqueous solution could be carried out spontaneously and the reaction rate was mainly controlled by internal diffusion. The effects of water usage, alkali concentration, reaction time, and temperature on the leaching procedure were inspected, and the products were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy, respectively. After NaOH leaching and magnetic separation, the concentrate, with Fe purity of 65.98% and Fe recovery of 82.46%, and the tailings, with TiO2 purity of 32.09% and TiO2 recovery of 80.79%, were obtained, respectively.


1981 ◽  
Vol 1 (10) ◽  
pp. 801-810 ◽  
Author(s):  
Karl A. Piez ◽  
Benes L. Trus

A specific fibril model is presented consisting of bundles of five-stranded microfibrils, which are usually disordered (except axially) but under lateral compression become ordered. The features are as follows (where D = 234 residues or 67 nm): (1) D-staggered collagen molecules 4.5 D long in the helical microfibril have a left-handed supercoil with a pitch of 400–700 residues, but microfibrils need not have helical symmetry. (2) Straight-tilted 0.5-D overlap regions on a near-hexagonal lattice contribute the discrete x-ray diffraction reflections arising from lateral order, while the gap regions remain disordered. (3) The overlap regions are equivalent, but are crystallographically distinguished by systematic displacements from the near-hexagonal lattice. (4) The unit cell is the same as in a recently proposed three-dimensional crystal model, and calculated intensities in the equatorial region of the x-ray diffraction pattern agree with observed values.


IUCrJ ◽  
2014 ◽  
Vol 1 (2) ◽  
pp. 136-150 ◽  
Author(s):  
Palash Sanphui ◽  
Geetha Bolla ◽  
Ashwini Nangia ◽  
Vladimir Chernyshev

Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR),p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug.


2021 ◽  
pp. 096739112199822
Author(s):  
Ahmed I Abou-Kandil ◽  
Gerhard Goldbeck

Studying the crystalline structure of uniaxially and biaxially drawn polyesters is of great importance due to their wide range of applications. In this study, we shed some light on the behaviour of PET and PEN under uniaxial stress using experimental and molecular modelling techniques. Comparing experiment with modelling provides insights into polymer crystallisation with extended chains. Experimental x-ray diffraction patterns are reproduced by means of models of chains sliding along the c-axis leading to some loss of three-dimensional order, i.e. moving away from the condition of perfect register of the fully extended chains in triclinic crystals of both PET and PEN. This will help us understand the mechanism of polymer crystallisation under uniaxial stress and the appearance of mesophases in some cases as discussed herein.


2014 ◽  
Vol 919-921 ◽  
pp. 2013-2016 ◽  
Author(s):  
Ya Bing Liu ◽  
Hong Jie Wang ◽  
Hong Kai Zhao

A POM - based organice - inorganic hybrid compound with the chemical formula of[Cu (phen)2]3[W6O19] (phen = 1,10-phenanthroline) (1) has been hydrothermally synthesized andstructurally characterized by the elemental analysis, and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space groupC2/c witha=18.319(4) Å,b= 17.311(4) Å,c= 22.248(4) Å,β= 112.40(3) o,V= 6523(2) Å3,Z= 4, R1= 0.0448, andwR2=0.1218. Compound 1 consists of the [W6O19]3-building blocks and [Cu (phen)2]+metal organic cationic moieties, which are packed together via the extensive hydrogen-bonding interactions to form a three-dimensional supramolecular framework. The adsorption of methylene blue (MB) under UV irradiation with 1 as the heterogeneous adsorbent has been investigated, showing a good adsorptive property of 1 for MB degradation.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Sign in / Sign up

Export Citation Format

Share Document