scholarly journals Medium-Intensity Treadmill Exercise Exerts Beneficial Effects on Bone Modeling Through Bone Marrow Mesenchymal Stromal Cells

Author(s):  
Lingli Zhang ◽  
Yu Yuan ◽  
Wei Wu ◽  
Zhongguang Sun ◽  
Le Lei ◽  
...  

As a type of multipotential cells, bone marrow mesenchymal stromal cells (BMMSCs) can differentiate into chondrocytes, osteoblasts, and adipocytes under different loading condition or specific microenvironment. Previous studies have shown that BMMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. The appropriate physical activity and exercise could help attenuate bone loss, effectively stimulate bone formation, increase bone mineral density (BMD), prevent the progression of osteoporosis, and reduce the risk of bone fractures. Bone morphogenetic protein (BMP) is originally discovered as a protein with heterotopic bone-inducing activity in the bone matrix that exerts a critical role in multiple stages of bone metabolism. In the present study, the medium-intensity treadmill exercise enhanced bone formation and increased osteocalcin (OCN) and osteopontin (OPN) mRNA expression as well as activation of the BMP-Smad signaling pathway in vivo. In order to investigate the effect of a BMP-Smad signaling pathway, we injected mice with activated enzyme inhibitors (LDN-193189HCL) and subjected the mice to treadmill exercise intervention. LDN-193189HCL attenuated the BMD and bone mass mediated by medium-intensity exercise and BMP-Smad signaling pathway.

2015 ◽  
Vol 13 ◽  
pp. 254-265 ◽  
Author(s):  
Wanxun Yang ◽  
Sanne K. Both ◽  
Gerjo J.V.M. van Osch ◽  
Yining Wang ◽  
John A. Jansen ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0213220 ◽  
Author(s):  
Masahiro Yoshida ◽  
Hiroto Horiguchi ◽  
Shohei Kikuchi ◽  
Satoshi Iyama ◽  
Hiroshi Ikeda ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1906-1906
Author(s):  
Richard W.J. Groen ◽  
Willy A. Noort ◽  
Jessica Sigmans ◽  
Aniek van Stralen ◽  
Linda Aalders ◽  
...  

Abstract Multiple myeloma (MM), a B-cell neoplasm characterized by a clonal expansion of malignant plasma cells in the bone marrow (BM), is accompanied by osteolytic lesions and/or diffuse osteopenia in up to 90% of the patients. Even after successful treatment, these MM-induced bone lesions do not normalize. We hypothesized that this might be caused by MM-induced irreversible impairment of the osteoblast function in the BM microenvironment. To study this bone remodeling processes in MM we used a recently developed, humanized mouse model of MM that allows engraftment and outgrowth of patient MM (pMM) cells in a humanized BM niche. To this end, ceramic scaffolds are seeded with culture-expanded human mesenchymal stromal cells (MSCs) from human BM, differentiated in vitro to osteoblasts for 1 week, then implanted subcutaneously in immune-deficient RAG2-/-gc-/--mice and after 6-8 weeks a layer of human bone is deposited on the surface of the scaffolds. Following the injection of luciferase-GFP gene marked primary MM cells (pMM), this results in homing and outgrowth of pMM in the scaffolds (Groen et al., Blood 2012). Here we describe a modification of this in vivo model, by co-implanting MSC loaded scaffolds, with pMM cells adhered to the hybrid scaffolds, at one side of the mouse, and with hybrid scaffolds only (without pMM) at the other side of the mouse. At this contra-lateral location bone formation can take place undisturbed (i.e., not affected by the presence of MM) and serves as an internal control for the osteogenic potential of the osteoblasts. Thus this model allows us to study bidirectional interactions between pMM cells and the osteoblast and the resulting inhibition of osteogenesis. Here we report that outgrowth pMM cells indeed resulted in on average 50-75% decrease in bone formation, and, using bioluminescence imaging, we found an inverse correlation between the size of the tumor and the amount of bone formation: with increasing tumor size, the amount of bone formed was less. Human AML growing in the scaffolds (serving as control) does not influence the bone forming process. At the end of the experiment when we analyzed gene expression in the human stromal cells (CD73+ CD90+ CD105+) that we cultured from scaffolds containing pMM tumors, we found a significant reduction in expression of transcripts for alkaline phosphatase (ALP), collagen1A1 (colA1), osteoglycin (OGN), osteomodulin (OMD), and abnormal spindle-like microcephaly associated (ASPM), genes that have been implicated in osteogenesis. These data suggest that pMM cells interfere with the osteogenic differentiation of MSCs in the context of an in vivo biocompatible scaffold engineered to simulate the human BM microenvironment. Taken together, our data show that co-implanting MSCs together with the pMM cells can serve as a model to study the effect of pMM cells on osteogenesis, which provides a tool to unravel the mutual interaction between MM cells and the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 394 (6) ◽  
pp. 703-714 ◽  
Author(s):  
Takenobu Katagiri ◽  
Sho Tsukamoto

Abstract Bone morphogenetic proteins (BMPs) are multifunctional cytokines that belong to the transforming growth factor-β family. BMPs were originally identified based on their unique activity, inducing heterotopic bone formation in skeletal muscle. This unique BMP activity is transduced by specific type I and type II transmembrane kinase receptors. Among the downstream pathways activated by these receptors, the Smad1/5/8 transcription factors appear to play critical roles in BMP activity. Smad1/5/8 transcription factors are phosphorylated at the C-terminal SVS motif by BMP type I receptors and then induce the transcription of early BMP-responsive genes by binding to conserved sequences in their enhancer regions. The linker regions of Smad1/5/8 contain multiple kinase phosphorylation sites, and phosphorylation and dephosphorylation of these sites regulate the transcriptional activity of Smad proteins. Gain-of-function mutations in one BMP type I receptor have been identified in patients with fibrodysplasia ossificans progressiva, a rare genetic disorder that is characterized by progressive heterotopic bone formation in the skeletal muscle. The mutant receptors activate the Smad signaling pathway even in the absence of BMPs, therefore novel inhibitors for the BMP receptor – Smad axis are being developed to prevent heterotopic bone formation in fibrodysplasia ossificans progressiva. Taken together, the data in the literature show that the BMP type I receptor – Smad signaling axis is the critical pathway for the unique activity of BMPs and is a potential therapeutic target for pathological conditions caused by inappropriate BMP activity.


Sign in / Sign up

Export Citation Format

Share Document