scholarly journals Taurine Attenuates the Hypotaurine-Induced Progression of CRC via ERK/RSK Signaling

Author(s):  
Xiaodan Hou ◽  
Junwei Hu ◽  
Xinyu Zhao ◽  
Qing Wei ◽  
Rongping Zhao ◽  
...  

Colorectal cancer (CRC) is one of the most common malignant tumors, and previous metabolomics work has demonstrated great promise in identifying specific small molecules of tumor phenotype. In the present study, we analyzed the metabolites of resected tissues through gas chromatography-mass spectrometry (GC-MS), and found that the concentration of taurine in CRC tissues diminished whereas the concentration of hypotaurine increased. The results in vitro demonstrated that taurine significantly suppressed cellular proliferation, metastasis, and colony formation whereas it induced apoptosis in CRC cells. Furthermore, taurine regulated the expression levels of epithelial mesenchymal transition (EMT)-associated genes in a dose-dependent manner. Taurine also alleviated hypotaurine-induced CRC progression, which was linked to the inhibition of the ERK/RSK-signaling pathway and diminution in intracellular hypotaurine. Taurine additionally attenuated hypotaurine-induced tumor growth and metastasis in vivo. Patients with CRC exhibited lower levels of serum taurine, suggesting that taurine might be a promising biomarker reflecting a poor prognosis in CRC. Collectively, our results demonstrated that taurine-attenuated, hypotaurine-induced CRC progression provides a potential target for CRC therapy.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Xiaoyong Huang ◽  
Haiyan Shi ◽  
Xinghai Shi ◽  
Xuemei Jiang

Abstract Background Cervical cancer (CC) is one of the most common and malignant tumors in women. In this study, we aim to explore the role and mechanism of F-box and leucine rich repeat protein 19 antisense RNA 1 (FBXL19-AS1), a novel long-chain non coding RNA (lncRNA) with marked roles in a variety of tumors, in regulating the proliferation and metastasis of CC. Methods The expression of FBXL19-AS1, miR-193a-5p and COL1A1 were detected by RT-PCR and western blot. Gain- and loss-of functional assays of FBXL19-AS1 and miR-193a-5p were performed in CC cell lines in vitro or in vivo. The proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition (EMT) of CC cells were determined. Results FBXL19-AS1 and COL1A1 were significantly up-regulated in CC tissues, while miR-193a-5p was significantly down-regulated. Overexpression of FBXL19-AS1 significantly promoted the proliferation, migration, invasion, EMT and growth of CC cells and inhibited apoptosis, while knockdown of FBXL19-AS1 had the opposite effects. On the other hand, miR-193a-5p inhibited the proliferation and metastasis of CC cells. Mechanistically, FBXL19-AS1 functioned as a competitive endogenous RNA (ceRNA) and inhibited the expression of miR-193a-5p, which targeted at the 3’-UTR site of COL1A1 and negatively regulated COL1A1 expression. Conclusions FBXL19-AS1 promotes the proliferation and metastasis of CC cells by sponging miR-193a-5p and up-regulating COL1A1.


Pharmacology ◽  
2019 ◽  
Vol 104 (5-6) ◽  
pp. 312-319 ◽  
Author(s):  
Can Wei ◽  
Junfeng Jing ◽  
Yanbin Zhang ◽  
Ling Fang

Background: Wogonoside, an effective component of Scutellaria baicalensis extract, has recently become a hot topic for its newly discovered anticancer efficacy, but the underlying pharmacological mechanism is still unclear. In this study, we tested the inhibitory effects of wogonoside in human prostate cancer PC3 cells in vitro and vivo. Methods: The effects of wogonoside on cell viability, cycle progression, invasion, migration, and apoptosis were assessed in vitro. The levels of proteins in related signaling pathways were detected by western blotting assay. Finally, nude mouse tumorigenicity assay was conducted to detect the anticancer effect of wogonoside in vivo. Results: Wogonoside inhibited cell viability, invasive and migratory ability in a time- and dose-dependent manner. Flow cytometry indicated that wogonoside could induce cell apoptosis and S phase cell-cycle arrest. Mechanically, wogonoside suppressed the Wnt/β-catenin signaling pathway, and the level of p-glycogen synthase kinase-3β (GSK-3β; Ser9) was inhibited by wogonoside. The epithelial-mesenchymal transition (EMT) process was also reversed in PC3 cell line after wogonoside treatment. In vivo experiments showed that wogonoside inhibited tumor growth in xenograft mouse models. Conclusion: These findings revealed that wogonoside could suppress Wnt/β-catenin pathway and reversing the EMT process in PC3 cells. GSK-3β acts as a tumor suppressor in prostate cancer. Wogonoside may serve as an effective agent for treating prostate cancer.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321386
Author(s):  
Shushu Song ◽  
Yinghong Shi ◽  
Weicheng Wu ◽  
Hao Wu ◽  
Lei Chang ◽  
...  

ObjectiveDysfunction of endoplasmic reticulum (ER) proteins is closely related to homeostasis disturbance and malignant transformation of hepatocellular carcinoma (HCC). Reticulons (RTN) are a family of ER-resident proteins critical for maintaining ER function. Nevertheless, the precise roles of RTN in HCC remain largely unclear. The aim of the study is to examine the effect of reticulon family member RTN3 on HCC development and explore the underlying mechanisms.DesignClinical HCC samples were collected to assess the relationship between RTN3 expression and patients’ outcome. HCC cell lines were employed to examine the effects of RTN3 on cellular proliferation, apoptosis and signal transduction in vitro. Nude mice model was used to detect the role of RTN3 in modulating tumour growth in vivo.ResultsWe found that RTN3 was highly expressed in normal hepatocytes but frequently downregulated in HCC. Low RTN3 expression predicted poor outcome in patients with HCC in TP53 gene mutation and HBV infection status-dependent manner. RTN3 restrained HCC growth and induced apoptosis by activating p53. Mechanism studies indicated that RTN3 facilitated p53 Ser392 phosphorylation via Chk2 and enhanced subsequent p53 nuclear localisation. RTN3 interacted with Chk2, recruited it to ER and promoted its activation in an ER calcium-dependent manner. Nevertheless, the tumour suppressive effects of RTN3 were abrogated in HBV-positive cells. HBV surface antigen competed with Chk2 for RTN3 binding and blocked RTN3-mediated Chk2/p53 activation.ConclusionThe findings suggest that RTN3 functions as a novel suppressor of HCC by activating Chk2/p53 pathway and provide more clues to better understand the oncogenic effects of HBV.


2020 ◽  
Author(s):  
Yunliang Lu ◽  
Xiaohui Zhou ◽  
Weilin Zhao ◽  
Zhipeng Liao ◽  
Bo Li ◽  
...  

Abstract Background Acy1 Coenzyme A Acyltransferases1 (ACAT1) is a key enzyme in the metabolism of ketone bodies, but its expression and biological function in the pathogenesis of NPC remains underexplored. Methods The mRNA and protein expression levels of ACAT1 in NPC and normal control tissues were analyzed by qPCR and immunohistochemistry staining, respectively. GEO database was applied for meta-analysis of ACAT1 mRNA expression and DNA promoter methylation. The role of ACAT1 in NPC proliferation was examined by CCK8 and colony formation assays in vitro and tumorigenicity in vivo. The wound healing and transwell assays were used for analyzing the migratory and invasive ability. cDNA microarray analysis was performed to identify the genes involved in epithelial-mesenchymal transition and dysregulated by ACAT1. These changes were further confirmed by western blot. Results We found that ACAT1 is inactivated in NPC cell lines and primary tissues. DNA microarray data showed higher methylation in the CpG island region of ACAT1 in NPC than normal tissues. The demethylating reagent 5-aza-dC significantly restored the transcription of ACAT1 in NPC cell lines, suggesting that ACAT1 was inactivated by DNA promoter hypermethylation. Ectopic overexpression of ACAT1 remarkably suppressed the proliferation and colony formation of NPC cells in vitro. As well, the tumorigenesis of NPC cells overexpressing ACAT1 was decreased in vivo. In addition, the migratory and invasive capacities of NPC cells was inhibited by ACAT1 overexpression. Importantly, the higher level of ACAT1 was accompanied by an increased expression of CDH1, EPCAM, and a decreased expression of vimentin and SPARC. This strongly indicates that ACAT1 is able to affect the epithelial-mesenchymal transition in NPC, thereby controlling cellular motility. In addition, we found that ACAT1 expression increases the intracellular level of β-HB. Moreover, exogenous β-HB remarkably inhibits the growth of NPC cells in a dose-dependent manner. Conclusions We have discovered that the ketone body metabolism enzyme ACAT1 is epigenetically downregulated in NPC and acts as a potential tumor suppressor in NPC. Our findings highlight the possibility of using the modulation of ketone body metabolism as effective adjuvant therapy for NPC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Li ◽  
Haojie Wang ◽  
Zhijie Liu ◽  
Alimujiang Abudureyimu

Background: Up until now, the role of circSETD3 (Has_circ_0000567) in regulating cancer development has been reported in several tumors, but the role and regulatory mechanism of circSETD3 in hepatoblastoma (HB) remain unclear.Methods: The qPCR and western blotting were used to determine the mRNA and protein levels in the present study. Stability of circular RNA was detected by RNA digested experiments. The gain-of-function and rescue experiments were used to explore the function and mechanism of circSETD3 in HB. Cell counting kit-8, colony formation, transwell assay, and xenograft mice model were used to detect effects and regulatory mechanism of circSETD3/miR-423-3p/Bim axis on cell aggressive phenotype in vitro and in vivo.Results: Here, we identified that circSETD3 downregulated in both HB clinical tissues and cell lines, compared to that of normal tissues and cells. Further gain-of-function experiments validated that circSETD3 overexpression inhibited cell proliferation, viability, migration, epithelial-mesenchymal transition (EMT) and tumorigenesis, and induced cell apoptosis in HB cells. Next, we validated that miR-423-3p targeted both circSETD3 and 3′ untranslated region (3′UTR) of Bim, and circSETD3 positively regulated Bim in HB cells through sponging miR-423-3p in a competing endogenous RNA (ceRNA)-dependent manner. Furthermore, through conducting reversal experiments, we evidenced that the inhibiting effects of circSETD3 overexpression on HB development were abrogated by upregulating miR-423-3p and downregulating Bim.Conclusion: Taken together, we evidenced that circSETD3 sponged miR-423-3p to upregulate Bim, resulting in the inhibition of HB development.


Author(s):  
Xiaoying You ◽  
Min Li ◽  
Hongwei Cai ◽  
Wenwen Zhang ◽  
Ye Hong ◽  
...  

Gastric cancer (GC) is one of the most common malignant tumors of the digestive system, listed as the second cause of cancer-related deaths worldwide. S100 Calcium Binding Protein A16 (S100A16) is an acidic calcium-binding protein associated with several types of tumor progression. However, the function of S100A16 in GC is still not very clear. In this study, we analyzed S100A16 expression with the GEPIA database and the UALCAN cancer database. Meanwhile, 100 clinical GC samples were used for the evaluation of its role in the prognostic analysis. We found that S100A16 is significantly upregulated in GC tissues and closely correlated with poor prognosis in GC patients. Functional studies reveal that S100A16 overexpression triggers GC cell proliferation and migration both in vivo and in vitro; by contrast, S100A16 knockdown restricts the speed of GC cell growth and mobility. Proteomic analysis results reveal a large S100A16 interactome, which includes ZO-2 (Zonula Occludens-2), a master regulator of cell-to-cell tight junctions. Mechanistic assay results indicate that excessive S100A16 instigates GC cell invasion, migration, and epithelial-mesenchymal transition (EMT) via ZO-2 inhibition, which arose from S100A16-mediated ZO-2 ubiquitination and degradation. Our results not only reveal that S100A16 is a promising candidate biomarker in GC early diagnosis and prediction of metastasis, but also establish the therapeutic importance of targeting S100A16 to prevent ZO-2 loss and suppress GC metastasis and progression.


2021 ◽  
Author(s):  
Lin-lin Zhang ◽  
Qi Li ◽  
Dian-sheng Zhong ◽  
Wei-jian Zhang ◽  
Xiao-jie Sun ◽  
...  

Abstract Background Lung cancer, as one of the most lethal malignant tumors, is closely related to epithelial mesenchymal transition (EMT). Methods Clinical specimens and TCGA database were used to analyze the expression of MCM and HDAC1 and their impact on the survival of lung cancer patients. Cell and animal experiments are used to verify the promotion of EMT of lung cancer cells by the expression of MCM5 and HDAC1. Results We found that MCM5 interacts with HDAC1 and promotes the EMT-mediated malignant progression of lung cancer. Lung adenocarcinoma patients with high expression of MCM5 and HDAC1 have poor survival time. Overexpression of MCM5 and HDAC1 in A549 and H1975 cells can promote metastasis and invasion in vitro and tumor growth and metastasis in vivo. Moreover, astragaloside IV can block the interaction of HDAC1 and MCM5, which can then inhibit the malignant progression of lung cancer in vivo and in vitro. Conclusion We described the interaction of MCM5 and HDAC1 to promote the EMT-dependent malignant progression in lung cancer. Astragaloside IV inhibited lung cancer progression by blocking the combination of MCM5 and HDAC1.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shaomin Shi ◽  
Chongyang Li ◽  
Yanli Zhang ◽  
Chaowei Deng ◽  
Wei Liu ◽  
...  

Dihydrocapsaicin (DHC) is one of the main components of capsaicinoids in Capsicum. It has been reported that DHC exerts anti-cancer effects on diverse malignant tumors, such as colorectal cancer, breast cancer, and glioma. However, studies focused on the effect of DHC upon melanoma have rarely been done. In the present study, melanoma A375 and MV3 cell lines were treated with DHC and the cell proliferation, migration, and invasion were significantly suppressed. Furthermore, DHC effectively inhibited xenograft tumor growth and pulmonary metastasis of melanoma cells in NOD/SCID mice model. It was identified that β-catenin, which plays significant roles in cell proliferation and epithelial-mesenchymal transition, was down-regulated after DHC treatment. In addition, cyclin D1, c-Myc, MMP2, and MMP7, which are critical in diverse cellular process regulation as downstream proteins of β-catenin, were all decreased. Mechanistically, DHC accelerates ubiquitination of β-catenin and up-regulates the beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) in melanoma cells. The DHC induced suppression of cell proliferation, migration, and invasion were partly rescued by exogenous β-catenin overexpression, both in vitro and in vivo. Taken together, DHC may serve as a candidate natural compound for human melanoma treatment through β-catenin pathway.


2021 ◽  
Vol 10 ◽  
Author(s):  
Bing Liao ◽  
Yun Yi ◽  
Lei Zeng ◽  
Zhi Wang ◽  
Xinhua Zhu ◽  
...  

Accumulating evidence has indicated that lncRNAs regulate various biological and pathological processes in diverse malignant tumors. The roles of LINC00667 in cancer development have been explored in glioma, hepatocellular carcinoma and non-small cell lung cancer, but not in nasopharyngeal carcinoma (NPC). In the present study, we characterize the role and molecular mechanism of LINC00667 in NPC progression. It was found that LINC00667 was overexpressed in NPC cells compared to normal cells. Silencing LINC00667 suppressed the proliferation, migration, invasion and epithelial mesenchymal transition (EMT) in NPC cells. In addition, bioinformatics analysis revealed that LINC00667 acted as a ceRNA to absorb miR-4319. Further investigations illustrated that miR-4319 had low expression in NPC cells and functioned as a tumor suppressor in the progression of NPC. Mechanistic study identified forkhead box Q1 (FOXQ1) as a functional target of miR-4319. The effect of LINC00667 in NPC development was mediated by the miR-4319/FOXQ1 axis. Analysis on tumorxenograft mouse model demonstrated that knockdown of LINC00667 repressed NPC tumor growth in vivo and confirmed the in vitro results. Our present study suggested that LINC00667 promoted the malignant phenotypes of NPC cells by competitively binding to miR-4319 to up-regulate FOXQ1 expression. Our results reveled that LINC00667 could be a diagnostic and therapeutic target for NPC patients.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qianmei Fu ◽  
Xiaohong Tan ◽  
Huaming Tang ◽  
Jijiang Liu

Abstract Background As a significant cause of malignancy mortality, gastric carcinoma (GC) has been well documented to be an often-fatal diagnosis. Despite the limitations of effective therapy, immunotherapy has emerged as a promising therapeutic approach capable of killing cancer cells via the immune system. The current study was conducted to investigate the effect of cytokine C–C motif chemokine ligand 21 (CCL21) on GC progression through the metastasis-associated lung adenocarcinoma transcript 1/serine arginine-rich splicing factor 1/mammalian target of rapamycin (MALAT1/SRSF1/mTOR) axis. Methods Bioinformatics analysis was conducted to identify the key genes associated with GC and to subsequently predict their downstream genes. The effect of CCL21, MALAT1, and SRSF1 on the malignant phenotypes and epithelial-mesenchymal transition (EMT) of SGC-7901 and MGC-803 cells in-vitro and the tumorigenesis of SGC-7901 and MGC-803 cells in-vivo were assessed by expression determination and plasmid transfection. Additionally, RNA pull-down and RNA binding protein immunoprecipitation experiments were performed to determine the MALAT1-microRNA-202-3p (miR-203-3p) interaction and miR-202-3p-SRSF1 interaction followed by the analysis of their effect on the mTOR pathway. Results CCL21 was identified as a key GC immune gene. Overexpressed CCL21, MALAT1, and SRSF1 along with poorly expressed miR-202-3p were identified in the GC cells. CCL21 induced the MALAT1 expression in a time- and dose-dependent manner. Functionally, MALAT1 targeted miR-202-3p but upregulated SRSF1 and activated mTOR. Crucially, evidence was obtained indicating that CCL21 promoted both the malignant phenotypes and EMT of SGC-7901 and MGC-803 cells in-vitro and the tumorigenesis of SGC-7901 and MGC-803 cells in-vivo by increasing the MALAT1-induced upregulation of SRSF1. Conclusions Taken together, the key observations of our study provide evidence that CCL21 enhances the progression of GC via the MALAT1/SRSF1/mTOR axis, providing a novel therapeutic target for the treatment of GC.


Sign in / Sign up

Export Citation Format

Share Document