scholarly journals Development and Validation of a Hypoxia-Associated Prognostic Signature Related to Osteosarcoma Metastasis and Immune Infiltration

Author(s):  
Yucheng Fu ◽  
Qiyuan Bao ◽  
Zhuochao Liu ◽  
Guoyu He ◽  
Junxiang Wen ◽  
...  

BackgroundIncreasing evidence has shown that hypoxia microenvironment relates to tumor initiation and progression. However, no studies focus on the application of hypoxia-associated genes in predicting osteosarcoma patients’ prognosis. This research aims to identify the hypoxia-associated genes related to osteosarcoma metastasis and construct a gene signature to predict osteosarcoma prognosis.MethodsThe differentially expressed messenger RNAs (DEmRNAs) related to osteosarcoma metastasis were identified from Therapeutically Applicable Research to Generate Effective Treatments (Target) database. Univariate and multivariate cox regression analyses were performed to develop the hypoxia-associated prognostic signature. The Kaplan–Meier (KM) survival analyses of patients with high and low hypoxia risk scores were conducted. The nomogram was constructed and the gene signature was validated in the external Gene Expression Omnibus (GEO) cohort. Single-sample gene set enrichment analysis (ssGSEA) was conducted to investigate the relationships between immune infiltration and gene signature.ResultsTwo genes, including decorin (DCN) and prolyl 4-hydroxylase subunit alpha 1 (P4HA1), were involved in the hypoxia-associated gene signature. In training and testing datasets, patients with high-risk scores showed lower survival rates and the gene signature was identified as the independent prognostic factor. Receiver operating characteristic (ROC) curves demonstrated the robustness of signature. Functional analyses of DEmRNAs among high- and low-risk groups revealed that immune-associated functions and pathways were significantly enriched. Furthermore, ssGSEA showed that five immune cells (DCs, macrophages, neutrophils, pDCs, and TIL) and three immune features (CCR, APC co inhibition, and Check-point) were down-regulated in the high-risk group.ConclusionThe current study established and validated a novel hypoxia-associated gene signature in osteosarcoma. It could act as a prognostic biomarker and serve as therapeutic guidance in clinical applications.

2021 ◽  
Author(s):  
Yanjia Hu ◽  
Jing Zhang ◽  
Jing Chen

Abstract Background Hypoxia-related long non-coding RNAs (lncRNAs) have been proven to play a role in multiple cancers and can serve as prognostic markers. Lower-grade gliomas (LGGs) are characterized by large heterogeneity. Methods This study aimed to construct a hypoxia-related lncRNA signature for predicting the prognosis of LGG patients. Transcriptome and clinical data of LGG patients were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LGG cohort in TCGA was chosen as training set and LGG cohorts in CGGA served as validation sets. A prognostic signature consisting of fourteen hypoxia-related lncRNAs was constructed using univariate and LASSO Cox regression. A risk score formula involving the fourteen lncRNAs was developed to calculate the risk score and patients were classified into high- and low-risk groups based on cutoff. Kaplan-Meier survival analysis was used to compare the survival between two groups. Cox regression analysis was used to determine whether risk score was an independent prognostic factor. A nomogram was then constructed based on independent prognostic factors and assessed by C-index and calibration plot. Gene set enrichment analysis and immune cell infiltration analysis were performed to uncover further mechanisms of this lncRNA signature. Results LGG patients with high risk had poorer prognosis than those with low risk in both training and validation sets. Recipient operating characteristic curves showed good performance of the prognostic signature. Univariate and multivariate Cox regression confirmed that the established lncRNA signature was an independent prognostic factor. C-index and calibration plots showed good predictive performance of nomogram. Gene set enrichment analysis showed that genes in the high-risk group were enriched in apoptosis, cell adhesion, pathways in cancer, hypoxia etc. Immune cells were higher in high-risk group. Conclusion The present study showed the value of the 14-lncRNA signature in predicting survival of LGGs and these 14 lncRNAs could be further investigated to reveal more mechanisms involved in gliomas.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


Author(s):  
Gaoming Wang ◽  
Ludi Yang ◽  
Miao Hu ◽  
Renhao Hu ◽  
Yongkun Wang ◽  
...  

Stomach adenocarcinoma (STAD) is one of the most common cancers in the world. However, the prognosis of STAD remains poor, and the therapeutic effect of chemotherapy and immunotherapy varies from person to person. MicroRNAs (miRNAs) play vital roles in tumor development and metastasis and can be used for cancer diagnosis and prognosis. In this study, hsa-miR-100-5p was identified as the only dysregulated miRNA in STAD samples through an analysis of three miRNA expression matrices. A weighted gene co-expression network analysis (WGCNA) was performed to select hsa-miR-100-5p-related genes. A least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to establish a miR-100-5p-related prognostic signature. Kaplan–Meier analyses, nomograms, and univariate and multivariate Cox regression analyses were used to evaluate the prognostic signature, which was subsequently identified as an independent risk factor for STAD patients. We investigated the tumor immune environment between low- and high-risk groups and found that, among component types, M2 macrophages contributed the most to the difference between these groups. A drug sensitivity analysis suggested that patients with high-risk scores may be more sensitive to docetaxel and cisplatin chemotherapy and that patients in the low-risk group may be more likely to benefit from immunotherapy. Finally, external cohorts were evaluated to validate the robustness of the prognostic signature. In summary, this study may provide new ideas for developing more individualized therapeutic strategies for STAD patients.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Fu ◽  
Xindong Wei ◽  
Qiuqin Han ◽  
Jiamei Le ◽  
Yujie Ma ◽  
...  

Abstract Background Early recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are deeply involved in HCC prognosis. In this study, we aimed to establish a prognostic lncRNA signature for HCC early recurrence. Methods The lncRNA expression profile and corresponding clinical data were retrieved from total 299 HCC patients in TCGA database. LncRNA candidates correlated to early recurrence were selected by differentially expressed gene (DEG), univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. A 25-lncRNA prognostic signature was constructed according to receiver operating characteristic curve (ROC). Kaplan-Meier and multivariate Cox regression analyses were used to evaluate the performance of this signature. ROC and nomogram were used to evaluate the integrated models based on this signature with other independent clinical risk factors. Gene set enrichment analysis (GSEA) was used to reveal enriched gene sets in the high-risk group. Tumor infiltrating lymphocytes (TILs) levels were analyzed with single sample Gene Set Enrichment Analysis (ssGSEA). Immune therapy response prediction was performed with TIDE and SubMap. Chemotherapeutic response prediction was conducted by using Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. Results Compared to low-risk group, patients in high-risk group showed reduced disease-free survival (DFS) in the training (p < 0.0001) and validation cohort (p = 0.0132). The 25-lncRNA signature, AFP, TNM and vascular invasion could serve as independent risk factors for HCC early recurrence. Among them, the 25-lncRNA signature had the best predictive performance, and combination of those four risk factors further improves the prognostic potential. Moreover, GSEA showed significant enrichment of “E2F TARGETS”, “G2M CHECKPOINT”, “MYC TARGETS V1” and “DNA REPAIR” pathways in the high-risk group. In addition, increased TILs were observed in the low-risk group compared to the high-risk group. The 25-lncRNA signature negatively associates with the levels of some types of antitumor immune cells. Immunotherapies and chemotherapies prediction revealed differential responses to PD-1 inhibitor and several chemotherapeutic drugs in the low- and high-risk group. Conclusions Our study proposed a 25-lncRNA prognostic signature for predicting HCC early recurrence, which may guide postoperative treatment and recurrence surveillance in HCC patients.


2022 ◽  
Author(s):  
Cong Zhang ◽  
Cailing Zeng ◽  
Shaoquan Xiong ◽  
Zewei Zhao ◽  
Guoyu Wu

Abstract Background: Colorectal cancer (CRC) is a heterogeneous disease and one of the most common malignancies in the world. Previous studies have found that mitophagy plays an important role in the progression of colorectal cancer. This study is aimed to investigate the relationship between mitophagy-related genes and the prognosis of patients with CRC.Methods: Gene expression profiles and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis were used to establish the prognostic signature composed of mitophagy related genes. Kaplan-Meier curve and receiver operating characteristic (ROC) curve were used to analyze patient survival and verify the predictive accuracy of the signature, respectively. Construction of a nomogram prognostic prediction model was based on risk scores and clinicopathological parameters. Using the Genomics of Drug Sensitivity in Cancer (GDSC) database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity of chemotherapy, targeted therapy and immunotherapy. Results: A total of 44 mitophagy-driven genes connected with CRC survival were identified, and prognostic signature was established based on the expression of 10 of them (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high-risk and low-risk groups based on the median risk score, and the survival of patients in the high-risk group was significantly shorter than that of the low-risk group among the TCGA cohort (median OS 67.3 months vs not reached, p=0.00059) and two independent cohorts from GEO (median OS in GSE17536: 54.0 months vs not reached, p=0.0082; in GSE245: 7.7 months vs not reached, p=0.025). ROC curve showed that the area under the curves (AUC) of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of the signature. Then we constructed a nomogram combining the risk score, age and M stage, which had a concordance index of survival prediction of 0.77 (95% CI=0.71-0.83) and more robust predictive sensitivity and specificity. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly more abundant in the high-risk group. Furthermore, patients in the high-risk group were more sensitive to potential targeted therapies, including Motesanib, ATRA, Olaparib, Selumetinib, AZD8055 and immunotherapy. Conclusion: In conclusion, we constructed and validated a novel mitophagy related gene signature that can be used as an independent prognostic biomarker for CRC, and may lead to better stratification and selection of precise treatment for CRC patients.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16665-e16665
Author(s):  
Taicheng Zhou ◽  
Zhihua Cai ◽  
Ning Ma ◽  
Wenzhuan Xie ◽  
Chan Gao ◽  
...  

e16665 Background: Hepatocellular carcinoma (HCC) remains a major challenge for public health worldwide and long-term outcomes remained dismal despite availability of curative treatment. We aimed to construct a multi-gene model for prognosis prediction to inform clinical management of HCC. Methods: RNA-seq data of paired tumor and normal tissue samples of HCC patients from the TCGA and GEO database were used to identify differentially expressed genes (DEGs). DEGs shared by both cohorts along with patients’ survival data of the TCGA cohort were further analyzed using univariate Cox regression and LASSO Cox regression to build a prognostic 10-gene signature, followed by validation of the signature via ICGC cohort and identification of independent prognostic predictors. A nomogram for prognosis prediction was built and Gene Set Enrichment Analysis (GSEA) was performed to further understand the underlying molecular mechanisms. Results: Of 571 patients (70.93% men and 29.07% women; median age [IQR], 65 [56-72] years), a signature of 10 genes was constructed using the training cohort. In the testing and validation cohorts, the signature significantly stratified patients into low- vs high-risk groups in terms of overall survival across and within subpopulations with stage I/II and III/IV disease and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 0.13 [95% CI, 0.07-0.24; P < 0 .001] to 0.38 [95% CI, 0.2-0.71; P < 0.001]) after adjusting for clinicopathological factors. Prognosis was significantly worse in the high-risk group than in the low-risk group across cohorts (P < 0.001 for all). The 10-gene signature achieved a higher accuracy (C-index, 0.84; AUCs for 1-, 3- and 5-year OS, 0.84, 0.81 and 0.85, respectively) than 8 previously reported multigene signatures (C-index range, 0.67 to 0.73; AUCs range, 0.68 to 0.79, 0.68 to 0.80 and 0.67 to 0.78, respectively) for estimation of survival in comparable cohorts. A nomogram incorporating tumor stage and signature-based risk group showed better predictive performance for 1- and 3- year survival than for 5 year survival. Moreover, GSEA revealed that the pathways related to cell cycle regulation were more prominently enriched in the high-risk group while the low-risk group had higher enrichment of metabolic process. Conclusions: Taken together, we established a robust 10-gene signature and a nomogram to predict overall survival of HCC patients, which may help recognize high-risk patients potentially benefiting from more aggressive treatment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ying Ye ◽  
Qinjin Dai ◽  
Shuhong Li ◽  
Jie He ◽  
Hongbo Qi

Ferroptosis is an iron-dependent, regulated form of cell death, and the process is complex, consisting of a variety of metabolites and biological molecules. Ovarian cancer (OC) is a highly malignant gynecologic tumor with a poor survival rate. However, the predictive role of ferroptosis-related genes in ovarian cancer prognosis remains unknown. In this study, we demonstrated that the 57 ferroptosis-related genes were expressed differently between ovarian cancer and normal ovarian tissue, and based on these genes, all OC cases can be well divided into 2 subgroups by applying consensus clustering. We utilized the least absolute shrinkage and selection operator (LASSO) cox regression model to develop a multigene risk signature from the TCGA cohort and then validated it in an OC cohort from the GEO database. A 5-gene signature was built and reveals a favorable predictive efficacy in both TCGA and GEO cohort (P &lt; 0.001 and P = 0.03). The GO and KEGG analysis revealed that the differentially expressed genes (DEGs) between the low- and high-risk subgroup divided by our risk model were associated with tumor immunity, and lower immune status in the high-risk group was discovered. In conclusion, ferroptosis-related genes are vital factors predicting the prognosis of OC and could be a novel potential treatment target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guomin Wu ◽  
Qihao Wang ◽  
Ting Zhu ◽  
Linhai Fu ◽  
Zhupeng Li ◽  
...  

This study aimed to establish a prognostic risk model for lung adenocarcinoma (LUAD). We firstly divided 535 LUAD samples in TCGA-LUAD into high-, medium-, and low-immune infiltration groups by consensus clustering analysis according to immunological competence assessment by single-sample gene set enrichment analysis (ssGSEA). Profile of long non-coding RNAs (lncRNAs) in normal samples and LUAD samples in TCGA was used for a differential expression analysis in the high- and low-immune infiltration groups. A total of 1,570 immune-related differential lncRNAs in LUAD were obtained by intersecting the above results. Afterward, univariate COX regression analysis and multivariate stepwise COX regression analysis were conducted to screen prognosis-related lncRNAs, and an eight-immune-related-lncRNA prognostic signature was finally acquired (AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1, AC092168.2, FAM30A, and LINC02412). Kaplan–Meier analysis and ROC analysis indicated that the eight-lncRNA-based model was accurate to predict the prognosis of LUAD patients. Simultaneously, univariate COX regression analysis and multivariate COX regression analysis were undertaken on clinical features and risk scores. It was illustrated that the risk score was a prognostic factor independent from clinical features. Moreover, immune data of LUAD in the TIMER database were analyzed. The eight-immune-related-lncRNA prognostic signature was related to the infiltration of B cells, CD4+ T cells, and dendritic cells. GSEA enrichment analysis revealed significant differences in high- and low-risk groups in pathways like pentose phosphate pathway, ubiquitin mediated proteolysis, and P53 signaling pathway. This study helps to treat LUAD patients and explore molecules related to LUAD immune infiltration to deeply understand the specific mechanism.


2021 ◽  
Author(s):  
Wei Song ◽  
Weiting Kang ◽  
Qi Zhang

Abstract Objective: This study aimed to construct a ferroptosis-related gene signature to predict clinical prognosis and tumor immunity in patients with kidney renal clear cell carcinoma (KIRC).Methods: The mRNA expression profiles and corresponding clinical data of KIRC patients were downloaded from The Cancer Genome Atlas (TCGA), which were randomly divided into training (398 patients) and validation set (132 patients). The iron death related (IDR) prediction model was constructed based on training set and 60 ferroptosis-related genes from previous literatures, followed by prognostic performance evaluation and verification using the validation set. Moreover, functional enrichment, immune cell infiltration, metagene clusters correlation, and TIDE scoring analyses were performed. Results: In total, 23 ferroptosis-related genes were significantly associated with overall survival (OS). The IDR prediction model (a 10-gene signature) was then constructed to stratify patients into two risk groups. The OS of KIRC patients with high-risk scores was significantly shorter than those with low-risk scores. Moreover, the risk score was confirmed as an independent prognostic predictor for OS. The positive and negative correlated genes with this model were significantly enriched in p53 signaling pathway, and cGMP-PKG signaling pathway. The patients in the high-risk group had higher ratios of plasma cells, T cells CD8, and T cells regulatory Tregs. Furthermore, IgG, HCK, LCK, and Interferson metagenes were significantly correlated with risk score. By TIDE score analysis, patients in the high-risk group could benefit from immunotherapy.Conclusions: The identified ferroptosis-related gene signature is significantly correlated with clinical prognosis and immune immunity in KIRC patients.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16073-e16073
Author(s):  
Weitao Zhuang ◽  
Xiao-song Ben ◽  
Dan Tian ◽  
Zihao Zhou ◽  
Gang Chen ◽  
...  

e16073 Background: Esophageal squamous cell cancer (ESCC) is a malignant tumor with a poor 5-year relative survival. A prognosis prediction signature associated with DNA Damage Response (DDR) genes in ESCC was explored in this study. Methods: The clinical and gene expression profiles of ESCC patients were downloaded from the GEO and TCGA database. Univariate Cox regression and 1000 iterations of 10-fold cross-validation of LASSO Cox regression with binomial deviance minimization criteria were used to identify DDR genes as potential object and a prognostic signature for ESCC survival prediction, followed by validation of the signature via TCGA cohort and identification of independent prognostic predictors. A nomogram for prognosis prediction was built and Gene Set Enrichment Analysis (GSEA) was performed to further understand the underlying molecular mechanisms. Results: A signature of 8 DDR genes were constructed as being significantly associated with overall survival (OS) among patients with esophageal squamous cell carcinoma. The pronostic signature stratified ESCC patients into low- vs high-risk groups in terms of OS in the training set, testing set and the validation cohorts, and remained as an independent prognostic factor in multivariate analyses (hazard ratio (HR) in training set, 0.17 [95% CI, 0.09-0.35; P < 0 .001], HR in testing set, 0.38 [95% CI, 0.16-0.93; P = 0.029], HR in discovery cohort, 0.171 [95% CI, 0.03-0.48; P < 0 .001]) after adjusting for clinicopathological factors. The 8-DDR gene signature achieved a higher accuracy (C-index, 0.69; AUCs for 1-, 3- and 5-year OS, 0.74, 0.77 and 0.76, respectively) than 7 previously reported multigene signatures (C-index range, 0.53 to 0.60; AUCs range, 0.55to 0.66, 0.54 to 0.64 and 0.62 to 0.66, respectively) for estimation of survival in comparable cohorts. A nomogram incorporating tumor location, grade, adjuvant therapy and signature-based risk group showed better predictive performance for 1- and 3- year survival than for 5 year survival. Moreover, GSEA revealed that the DNA repair was more prominently enriched in the high-risk group while the low-risk group had not enrichment of any process (P > 0.05 for all). Conclusions: Taken together, our study identified 8 DDR genes related to the prognosis of ESCC patients, and constructed a robust prognostic signature to effectively stratify ESCC patients with different survival rates, which may help recognize high-risk patients potentially benefiting from more aggressive treatment.


Sign in / Sign up

Export Citation Format

Share Document