scholarly journals Deficiency of Ku Induces Host Cell Exploitation in Human Cancer Cells

Author(s):  
Okay Saydam ◽  
Nurten Saydam

Cancer metastasis is the major cause of death from cancer (Massague and Obenauf, 2016; Steeg, 2016). The extensive genetic heterogeneity and cellular plasticity of metastatic tumors set a prime barrier for the current cancer treatment protocols (Boumahdi and de Sauvage, 2020). In addition, acquired therapy resistance has become an insurmountable obstacle that abolishes the beneficial effects of numerous anti-cancer regimens (De Angelis et al., 2019; Boumahdi and de Sauvage, 2020). Here we report that deficiency of Ku leads to the exploitation of host cells in human cancer cell line models. We found that, upon conditional deletion of XRCC6 that codes for Ku70, HCT116 human colorectal cancer cells gain a parasitic lifestyle that is characterized by the continuous cycle of host cell exploitation. We also found that DAOY cells, a human medulloblastoma cell line, innately lack nuclear Ku70/Ku86 proteins and utilize the host-cell invasion/exit mechanism for maintenance of their survival, similarly to the Ku70 conditionally-null HCT116 cells. Our study demonstrates that a functional loss of Ku protein promotes an adaptive, opportunistic switch to a parasitic lifestyle in human cancer cells, providing evidence for a previously unknown mechanism of cell survival in response to severe genomic stress. We anticipate that our study will bring a new perspective for understanding the mechanisms of cancer cell evolution, leading to a shift in the current concepts of cancer therapy protocols directed to the prevention of cancer metastasis and therapy resistance.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shigetoshi Yokoyama ◽  
Shun Nakayama ◽  
Lei Xu ◽  
Aprile L. Pilon ◽  
Shioko Kimura

AbstractNon-canonical inflammasome activation that recognizes intracellular lipopolysaccharide (LPS) causes pyroptosis, the inflammatory death of innate immune cells. The role of pyroptosis in innate immune cells is to rapidly eliminate pathogen-infected cells and limit the replication niche in the host body. Whether this rapid cell elimination process of pyroptosis plays a role in elimination of cancer cells is largely unknown. Our earlier study demonstrated that a multi-functional secreted protein, secretoglobin (SCGB) 3A2, chaperones LPS to cytosol, and activates caspase-11 and the non-canonical inflammasome pathway, leading to pyroptosis. Here we show that SCGB3A2 exhibits marked anti-cancer activity against 5 out of 11 of human non-small cell lung cancer cell lines in mouse xenographs, while no effect was observed in 6 of 6 small cell lung cancer cell lines examined. All SCGB3A2-LPS-sensitive cells express syndecan 1 (SDC1), a SCGB3A2 cell surface receptor, and caspase-4 (CASP4), a critical component of the non-canonical inflammasome pathway. Two epithelial-derived colon cancer cell lines expressing SDC1 and CASP4 were also susceptible to SCGB3A2-LPS treatment. TCGA analysis revealed that lung adenocarcinoma patients with higher SCGB3A2 mRNA levels exhibited better survival. These data suggest that SCGB3A2 uses the machinery of pyroptosis for the elimination of human cancer cells via the non-canonical inflammasome pathway, and that SCGB3A2 may serve as a novel therapeutic to treat cancer, perhaps in combination with immuno and/or targeted therapies.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Meghan A Morrissey ◽  
Adam P Williamson ◽  
Adriana M Steinbach ◽  
Edward W Roberts ◽  
Nadja Kern ◽  
...  

Chimeric antigen receptors (CARs) are synthetic receptors that reprogram T cells to kill cancer. The success of CAR-T cell therapies highlights the promise of programmed immunity and suggests that applying CAR strategies to other immune cell lineages may be beneficial. Here, we engineered a family of Chimeric Antigen Receptors for Phagocytosis (CAR-Ps) that direct macrophages to engulf specific targets, including cancer cells. CAR-Ps consist of an extracellular antibody fragment, which can be modified to direct CAR-P activity towards specific antigens. By screening a panel of engulfment receptor intracellular domains, we found that the cytosolic domains from Megf10 and FcRɣ robustly triggered engulfment independently of their native extracellular domain. We show that CAR-Ps drive specific engulfment of antigen-coated synthetic particles and whole human cancer cells. Addition of a tandem PI3K recruitment domain increased cancer cell engulfment. Finally, we show that CAR-P expressing murine macrophages reduce cancer cell number in co-culture by over 40%.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Donna M. Sosnoski ◽  
Venkatesh Krishnan ◽  
William J. Kraemer ◽  
Courtenay Dunn-Lewis ◽  
Andrea M. Mastro

It is commonly accepted that cancer cells interact with host cells to create a microenvironment favoring malignant colonization. The complex bone microenvironment produces an ever changing array of cytokines and growth factors. In this study, we examined levels of MCP-1, IL-6, KC, MIP-2, VEGF, MIG, and eotaxin in femurs of athymic nude mice inoculated via intracardiac injection with MDA-MB-231GFPhuman metastatic breast cancer cells, MDA-MB-231BRMS1GFP, a metastasis suppressed variant, or PBS. Animals were euthanized (day 3, 11, 19, 27 after injection) to examine femoral cytokine levels at various stages of cancer cell colonization. The epiphysis contained significantly more cytokines than the diaphysis except for MIG which was similar throughout the bone. Variation among femurs was evident within all groups. By day 27, MCP-1, MIG, VEGF and eotaxin levels were significantly greater in femurs of cancer cell-inoculated mice. These pro-osteoclastic and angiogenic cytokines may manipulate the bone microenvironment to enhance cancer cell colonization.


2010 ◽  
Vol 24 (9) ◽  
pp. 1405-1413 ◽  
Author(s):  
C. Ngamkitidechakul ◽  
K. Jaijoy ◽  
P. Hansakul ◽  
N. Soonthornchareonnon ◽  
S. Sireeratawong

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 411 ◽  
Author(s):  
Hiroko Kozuka-Hata ◽  
Aya Kitamura ◽  
Tomoko Hiroki ◽  
Aiko Aizawa ◽  
Kouhei Tsumoto ◽  
...  

Post-translational modifications are known to be widely involved in the regulation of various biological processes, through the extensive diversification of each protein function at the cellular network level. In order to unveil the system-wide function of the protein lysine modification in cancer cell signaling, we performed global acetylation and ubiquitination proteome analyses of human cancer cells, based on high-resolution nanoflow liquid chromatography–tandem mass spectrometry, in combination with the efficient biochemical enrichment of target modified peptides. Our large-scale proteomic analysis enabled us to identify more than 5000 kinds of ubiquitinated sites and 1600 kinds of acetylated sites, from representative human cancer cell lines, leading to the identification of approximately 900 novel lysine modification sites in total. Very interestingly, 236 lysine residues derived from 141 proteins were found to be modified with both ubiquitination and acetylation. As a consequence of the subsequent motif extraction analyses, glutamic acid (E) was found to be highly enriched at the position (−1) for the lysine acetylation sites, whereas the same amino acid was relatively dispersed along the neighboring residues of the lysine ubiquitination sites. Our pathway analysis also indicated that the protein translational control pathways, such as the eukaryotic initiation factor 2 (EIF2) and the ubiquitin signaling pathways, were highly enriched in both of the acetylation and ubiquitination proteome data at the network level. This report provides the first integrative description of the protein acetylation and ubiquitination-oriented systematic regulation in human cancer cells.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2243 ◽  
Author(s):  
Xing Huang ◽  
Qing-Kun Shen ◽  
Hong-Jian Zhang ◽  
Jia-Li Li ◽  
Yu-Shun Tian ◽  
...  

The aim of the present study was to determine the cytotoxic effects of a series of novel dehydroepiandrosterone derivatives containing triazole at the C16 position on human cancer cells. The cancer cells used in the present study were A549, Hela, HepG-2, BEL7402, MCF-7, and HCT116. Several of the synthesised compounds exhibited potent antiproliferative effects. The most promising compound was (E)-3-hydroxy-16-((1-(4-iodophenyl)-1H-1,2,3-triazole-4-yl)methylene)-10,13-dimet-hyl-1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-2H-cyclopenta[a]phenanthren-17(14)-one (compound 2n), which showed considerably high antiproliferative activity in the HepG-2 cell line, with an IC50 value of 9.10 µM, and considerably high activity against the MCF-7 cell line, with an IC50 value of 9.18 µM. Flow cytometry assays demonstrated that compound 2n exerted antiproliferative effects by arresting cells in the G2 phase of the cell cycle and inducing apoptosis.


2019 ◽  
Author(s):  
Xin-Hui Pei

AbstractCancer cell specific antibodies are pivotal tools in developing new immunotherapies for treating cancers. However, acquirement of cancer cell specific antibodies is time-consuming and often arduous. To circumvent such a barrier, we developed a novel antibody-screening method that can be used to efficiently produce cancer cell specific antibodies by an ‘antibody filter’ mechanism. First, we used normal human cells to perform the immunization in mice and collected the antisera. Second, we used human cancer cells together with the antisera against normal human cells to immunize another batch of mice. Theoretically, the antisera were able to neutralize the antigens from normal human cells, and therefore specific antigens only expressed in cancer cells could take advantage of the immunization. Third, we screened positive clones that are specific for cancer cells but not normal cells. Using this conceptual method, we successfully obtained 11 monoclonal antibodies that are specific for a human liver cancer cells line (HepG2) but not for a normal human liver cell line (HH). In addition, these clones failed to recognize other human cancer cells originated from different tissues, further highlighting the specificity. Collectively, we provide a novel and effective approach for screening cancer cell specific monoclonal antibodies, which may significantly facilitate the development of new anti-cancer therapeutics.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Sooyeon Lim ◽  
Jin-Chul Ahn ◽  
Eun Jin Lee ◽  
Jongkee Kim

Abstract Sulforaphene (SFE), a major isothiocyanate in radish seeds, is a close chemical relative of sulforaphane (SFA) isolated from broccoli seeds and florets. The anti-proliferative mechanisms of SFA against cancer cells have been well investigated, but little is known about the potential anti-proliferative effects of SFE. In this study, we showed that SFE purified from radish seeds inhibited the growth of six cancer cell lines (A549, CHO, HeLa, Hepa1c1c7, HT-29, and LnCaP), with relative half maximal inhibitory concentration values ranging from 1.37 to 3.31 μg/mL. Among the six cancer cell lines, SFE showed the greatest growth inhibition against A549 lung cancer cells, where it induced apoptosis by changing the levels of poly(ADP-ribose) polymerase and caspase-3, -8, and -9. Our results indicate that SFE from radish seeds may have significant anti-proliferative potency against a broad range of human cancer cells via induction of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document