scholarly journals Single-Cell Atlas Reveals Fatty Acid Metabolites Regulate the Functional Heterogeneity of Mesenchymal Stem Cells

Author(s):  
Jiayi Xie ◽  
Qi Lou ◽  
Yunxin Zeng ◽  
Yingying Liang ◽  
Siyu Xie ◽  
...  

Bone marrow mesenchymal stem cells (MSCs) are widely used clinically due to their versatile roles in multipotency, immunomodulation, and hematopoietic stem cell (HSC) niche function. However, cellular heterogeneity limits MSCs in the consistency and efficacy of their clinical applications. Metabolism regulates stem cell function and fate decision; however, how metabolites regulate the functional heterogeneity of MSCs remains elusive. Here, using single-cell RNA sequencing, we discovered that fatty acid pathways are involved in the regulation of lineage commitment and functional heterogeneity of MSCs. Functional assays showed that a fatty acid metabolite, butyrate, suppressed the self-renewal, adipogenesis, and osteogenesis differentiation potential of MSCs with increased apoptosis. Conversely, butyrate supplement significantly promoted HSC niche factor expression in MSCs, which suggests that butyrate supplement may provide a therapeutic approach to enhance their HSC niche function. Overall, our work demonstrates that metabolites are essential to regulate the functional heterogeneity of MSCs.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 505-505
Author(s):  
Sandra Pinho ◽  
Julie Lacombe ◽  
Maher Hanoun ◽  
Ingmar Bruns ◽  
Yuya Kunisaki ◽  
...  

Abstract Abstract 505 Few markers have thus far been identified on native mesenchymal stem cells (MSCs), both in the mouse and human systems. Most markers cited in the literature are indeed based on expression analyses on heterogeneous cultured cell populations, which may not have self-renewal properties if rigorously tested by transplantation assays. Previous studies using Nestin (Nes)-Gfp transgenic mice showed that Nes-GFP+ cells are self-renewing MSCs, a major constituent of the hematopoietic stem cell (HSC) niche in the bone marrow (BM) (Nature 2010; 466:829). However, the cytoplasmic location of Nestin precludes prospective live cell isolation outside of the transgenic mice. Hence, finding a combination of surface markers labeling Nestin+ cells in situ would be valuable to isolate bona fide MSCs and characterize niche cells. Screening analyses toward this end revealed that PDGFRα and CD51 expression among CD45− Ter119− CD31− BM stromal cells comprised a large fraction (∼60%) of Nes-GFP+ cells. Upon gating first on PDGFRα+ and CD51+, double-positive cells were also highly enriched in Nes-GFP+ cells (∼75%), and represented a rare fraction (∼2%) of the stromal population. Endogenous Nestin expression was also enriched in PDGFRα+ CD51+ cells, compared to single-positive or double-negative stromal cells (control subsets). Cell sorting of BM PDGFRα+ CD51+ and control subsets revealed that PDGFRα+ CD51+ significantly enriched (> 10-fold, p<0.05) for colony forming unit-fibroblastic (CFU-F) and multipotent clonal mesenspheres (> 7-fold, p<0.01) that differentiate robustly along the osteoblastic, chondrocytic and adipocytic lineages. To test in vivo self-renewal capacity, clonal spheres or polyclonal freshly sorted PDGFRα+ CD51+ cells and control subsets were transplanted into recipient mice by different approaches (renal capsule implants, collagen and/or HA/TCP carrier grafts). After 2 months, secondary sphere formation assays and histological analyses revealed the in vivo self-renewal and heterotopic BM niche regeneration capacity of PDGFRα+ CD51+ cells, but not the control subsets. In addition, the PDGFRα+ CD51+ fraction of Nestin+ cells was markedly enriched in major HSC regulatory genes (Cxcl12, Vcam1, Angpt1, Opn and Scf), supporting the notion that niche activity co-segregates with MSC activity in the BM. Next, we investigated whether PDGFRα+ CD51+ cells also labeled putative Nestin+ MSCs in the human BM. To this end, we analyzed the fetal human BM (13–19 gw), a period during which hematopoietic activity is nascent. At this stage, we found that PDGFRα+ CD51+ cells comprised ∼3% of stromal cells, contained most of the CFU-F activity (6.3 ± 0.8 CFU-Fs/102 cells) in the BM, and also expressed Nestin and HSC regulatory factors. PDGFRα+ CD51+ cells could also form mesenspheres that can self-renew in vivo after heterotopic transplantation. Furthermore, we found that human BM PDGFRα+ CD51+ cells represented a subset of CD146+ cells previously suggested to mark human MSCs (Cell 2007; 131:324), as ∼30% of the CD146high cells also expressed PDGFRα and CD51, and ∼65% of PDGFRα+ CD51+ cells were CD146high. To evaluate functionally the HSC niche properties of human PDGFRα+ CD51+ cells, we set up a co-culture system of human BM CD34+ cells with PDGFRα+ CD51+ mesenspheres. We found that mesenspheres were capable of expanding the number of human CD45+ Lin− CD38− CD34+ CD90+ CD49f+ cells (hHSCs) by 11-fold (p<0.05) compared to input (day 0). In addition, hHSC expansion was 2-fold greater (p<0.05) using mesenspheres compared to serum-free media alone with hematopoietic growth factors (SCF, TPO, Flt3L). Recent studies have suggested that SCF production in the BM niche is derived from perivascular and endothelial cells distinct from Nestin+ cells (Nature 2012; 481:457), although Nestin+ MSCs express high levels of SCF (Nature 2010; 466:829). Immunofluorescence analyses of human PDGFRα+ CD51+ mesenspheres showed that all cells forming the sphere uniformly expressed both Nestin and SCF. Moreover, in the absence of SCF from the media, PDGFRα+ CD51+ mesenspheres rescued hHSCs expansion, yielding a 46- and 5-fold (p<0.001) expansion, as compared to control media alone and input, respectively. These results thus indicate that the HSC niche is conserved between the murine and human species and suggest that highly purified non-adherent cultures of niche cells may represent a useful novel technology to expand hHSCs in vitro. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Joan Isern ◽  
Andrés García-García ◽  
Ana M Martín ◽  
Lorena Arranz ◽  
Daniel Martín-Pérez ◽  
...  

Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin− MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ Pdgfrα− cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4011
Author(s):  
Brianna Chen ◽  
Dylan McCuaig-Walton ◽  
Sean Tan ◽  
Andrew P. Montgomery ◽  
Bryan W. Day ◽  
...  

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


Lupus ◽  
2010 ◽  
Vol 19 (12) ◽  
pp. 1468-1473 ◽  
Author(s):  
L. Sun

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multiorgan involvement and high mortality, which was reduced because of the most widely and classically used immunosuppressive therapies. However, some patients continue to have significant mortality. So a shift in the approach to the treatment of SLE is needed. In the past decade, most transplants have been performed in the treatment of SLE with allogeneic or autologous hematopoietic stem cells and currently emerging mesenchymal stem cells. There are some important differences between the two procedures.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jurate Savickiene ◽  
Grazina Treigyte ◽  
Sandra Baronaite ◽  
Giedre Valiuliene ◽  
Algirdas Kaupinis ◽  
...  

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


2021 ◽  
Vol 218 (2) ◽  
Author(s):  
Eleni Louka ◽  
Benjamin Povinelli ◽  
Alba Rodriguez-Meira ◽  
Gemma Buck ◽  
Wei Xiong Wen ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin−CD34+CD38−CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a “first hit,” (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


2016 ◽  
Author(s):  
Adam L MacLean ◽  
Maia A Smith ◽  
Juliane Liepe ◽  
Aaron Sim ◽  
Reema Khorshed ◽  
...  

AbstractThe haematopoietic stem cell (HSC) niche provides essential micro-environmental cues for the production and maintenance of HSCs within the bone marrow. During inflammation, haematopoietic dynamics are perturbed, but it is not known whether changes to the HSC-niche interaction occur as a result. We visualise HSCs directly in vivo, enabling detailed analysis of the 3D niche dynamics and migration patterns in murine bone marrow following Trichinella spiralis infection. Spatial statistical analysis of these HSC trajectories reveals two distinct modes of HSC behaviour: (i) a pattern of revisiting previously explored space, and (ii) a pattern of exploring new space. Whereas HSCs from control donors predominantly follow pattern (i), those from infected mice adopt both strategies. Using detailed computational analyses of cell migration tracks and life-history theory, we show that the increased motility of HSCs following infection can, perhaps counterintuitively, enable mice to cope better in deteriorating HSC-niche micro-environments following infection.Author SummaryHaematopoietic stem cells reside in the bone marrow where they are crucially maintained by an incompletely-determined set of niche factors. Recently it has been shown that chronic infection profoundly affects haematopoiesis by exhausting stem cell function, but these changes have not yet been resolved at the single cell level. Here we show that the stem cell–niche interactions triggered by infection are heterogeneous whereby cells exhibit different behavioural patterns: for some, movement is highly restricted, while others explore much larger regions of space over time. Overall, cells from infected mice display higher levels of persistence. This can be thought of as a search strategy: during infection the signals passed between stem cells and the niche may be blocked or inhibited. Resultantly, stem cells must choose to either ‘cling on’, or to leave in search of a better environment. The heterogeneity that these cells display has immediate consequences for translational therapies involving bone marrow transplant, and the effects that infection might have on these procedures.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Song ◽  
Naoki Kawazoe ◽  
Guoping Chen

Micropatterning technology is a highly advantageous approach for directly assessing and comparing the effects of different factors on stem cell functions. In this study, poly(vinyl alcohol)- (PVA-) micropatterned polystyrene surfaces were prepared using photoreactive PVA and ultraviolet photolithography with a photomask. The micropatterned surface was suitable for single-cell array formation and long-term cell culture due to the nanometer thickness of nonadhesive PVA layer. Different degrees of cell spreading with the same cell shape were established by adjusting the sizes of circular, cell-adhesive polystyrene micropatterns. Cell spreading and differentiation of mesenchymal stem cells (MSCs) on the micropatterns were investigated at the single-cell level. The assembly and organization of the cytoskeleton were regulated by the degree of cell spreading. Individual MSCs on large circular micropatterns exhibited a more highly ordered arrangement of actin filaments than did those on the small circular micropatterns. Furthermore, the differentiation of MSCs was dependent on the degree of cell spreading. Increased cell spreading facilitated the osteogenic differentiation but suppressed the adipogenic differentiation of MSCs. This micropatterning method is valuable for stem cell research in tissue engineering and regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document