scholarly journals ANXA1 as a Prognostic and Immune Microenvironmental Marker for Gliomas Based on Transcriptomic Analysis and Experimental Validation

Author(s):  
Zhongxiao Lin ◽  
Min Wen ◽  
Enxing Yu ◽  
Xiao Lin ◽  
Hua Wang ◽  
...  

The tumor microenvironment (TME) plays an important role in the growth and invasion of glioma. This study aimed to analyze the composition of the immune microenvironment in glioma samples and analyze the important differentially expressed genes to identify novel immune-targeted therapy for glioma. We downloaded transcriptomic data of 669 glioma samples from The Cancer Genome Atlas database. CIBERSORT and ESTIMATE methods were used to calculate the proportion of tumor-infiltrating immune cells and ratio of immune and stromal components in the TME. The differentially expressed genes (DEGs) were screened by comparing the genes expressed by both stromal and immune cells. Annexin A1 (ANXA1) was determined to be an important prognostic indicator through the common overlap of univariate Cox regression analysis and protein–protein interaction network analysis. The proportion of tumor-infiltrating immune cells, calculated by CIBERSORT algorithm, had a significant difference in distribution among the high and low ANXA1 expression groups, indicating that ANXA1 could be an important immune marker of TME. Furthermore, ANXA1 level was positively correlated with the histopathological factors and negatively related to the survival of glioma patients based on the analysis of multiple databases. Finally, in vitro experiments verified that antagonizing ANXA1 expression promoted cell apoptosis and inhibited the invasion and migration capacities of glioma cells. Therefore, ANXA1 due to its immune-related functions, can be an important prognostic indicator and immune microenvironmental marker for gliomas. Further studies are warranted to confirm ANXA1 as a potential immunotherapeutic target for gliomas.

MedPharmRes ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 5-20
Author(s):  
Vu Ho ◽  
Toan Pham ◽  
Tuong Ho ◽  
Lan Vuong

IVF carries a considerable physical, emotional and financial burden. Therefore, it would be useful to be able to predict the likelihood of success for each couple. The aim of this retrospective cohort study was to develop a prediction model to estimate the probability of a live birth at 12 months after one completed IVF cycle (all fresh and frozen embryo transfers from the same oocyte retrieval). We analyzed data collected from 2600 women undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) at a single center in Vietnam between April 2014 and December 2015. All patients received gonadotropin-releasing hormone (GnRH) antagonist stimulation, followed by fresh and/or frozen embryo transfer (FET) on Day 3. Using Cox regression analysis, five predictive factors were identified: female age, total dose of recombinant follicle stimulating hormone used, type of trigger, fresh or FET during the first transfer, and number of subsequent FET after the first transfer. The area under the receiver operating characteristics curve for the final model was 0.63 (95% confidence interval [CI] 0.60‒0.65) and 0.60 (95% CI 0.57‒0.63) for the validation cohort. There was no significant difference between the predicted and observed probabilities of live birth (Hosmer-Lemeshow test, p > 0.05). The model developed had similar discrimination to existing models and could be implemented in clinical practice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sheng Zheng ◽  
Zizhen Zhang ◽  
Ning Ding ◽  
Jiawei Sun ◽  
Yifeng Lin ◽  
...  

Abstract Introduction Angiogenesis is a key factor in promoting tumor growth, invasion and metastasis. In this study we aimed to investigate the prognostic value of angiogenesis-related genes (ARGs) in gastric cancer (GC). Methods mRNA sequencing data with clinical information of GC were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The differentially expressed ARGs between normal and tumor tissues were analyzed by limma package, and then prognosis‑associated genes were screened using Cox regression analysis. Nine angiogenesis genes were identified as crucially related to the overall survival (OS) of patients through least absolute shrinkage and selection operator (LASSO) regression. The prognostic model and corresponding nomograms were establish based on 9 ARGs and verified in in both TCGA and GEO GC cohorts respectively. Results Eighty-five differentially expressed ARGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that ARGs-related signaling pathway genes were highly related to tumor angiogenesis development. Kaplan–Meier analysis revealed that patients in the high-risk group had worse OS rates compared with the low-risk group in training cohort and validation cohort. In addition, RS had a good prognostic effect on GC patients with different clinical features, especially those with advanced GC. Besides, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. Conclusions We developed a nine gene signature related to the angiogenesis that can predict overall survival for GC. It’s assumed to be a valuable prognosis model with high efficiency, providing new perspectives in targeted therapy.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Dan Chen ◽  
Xiaoting Li ◽  
Hui Li ◽  
Kai Wang ◽  
Xianghua Tian

Background. As the most common hepatic malignancy, hepatocellular carcinoma (HCC) has a high incidence; therefore, in this paper, the immune-related genes were sought as biomarkers in liver cancer. Methods. In this study, a differential expression analysis of lncRNA and mRNA in The Cancer Genome Atlas (TCGA) dataset between the HCC group and the normal control group was performed. Enrichment analysis was used to screen immune-related differentially expressed genes. Cox regression analysis and survival analysis were used to determine prognostic genes of HCC, whose expression was detected by molecular experiments. Finally, important immune cells were identified by immune cell infiltration and detected by flow cytometry. Results. Compared with the normal group, 1613 differentially expressed mRNAs (DEmRs) and 1237 differentially expressed lncRNAs (DElncRs) were found in HCC. Among them, 143 immune-related DEmRs and 39 immune-related DElncRs were screened out. These genes were mainly related to MAPK cascade, PI3K-AKT signaling pathway, and TGF-beta. Through Cox regression analysis and survival analysis, MMP9, SPP1, HAGLR, LINC02202, and RP11-598F7.3 were finally determined as the potential diagnostic biomarkers for HCC. The gene expression was verified by RT-qPCR and western blot. In addition, CD4 + memory resting T cells and CD8 + T cells were identified as protective factors for overall survival of HCC, and they were found highly expressed in HCC through flow cytometry. Conclusion. The study explored the dysregulation mechanism and potential biomarkers of immune-related genes and further identified the influence of immune cells on the prognosis of HCC, providing a theoretical basis for the prognosis prediction and immunotherapy in HCC patients.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2020 ◽  
Author(s):  
Xiang Zhou ◽  
Keying Zhang ◽  
Fa Yang ◽  
Chao Xu ◽  
Jianhua Jiao ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a disease with higher morbidity, mortality, and poor prognosis in the whole world. Understanding the crosslink between HCC and the immune system is essential for people to uncover a few potential and valuable therapeutic strategies. This study aimed to reveal the correlation between HCC and immune-related genes and establish a clinical evaluation model. Methods: We had analyzed the clinical information consisted of 373 HCC and 49 normal samples from the cancer genome atlas (TCGA). The differentially expressed genes (DEGs) were selected by the Wilcoxon test and the immune-related differentially expressed genes (IRDEGs) in DEGs were identified by matching DEGs with immune-related genes downloaded from the ImmPort database. Furthermore, the univariate Cox regression analysis and multivariate Cox regression analysis were performed to construct a prognostic risk model. Then, twenty-two types of tumor immune-infiltrating cells (TIICs) were downloaded from Tumor Immune Estimation Resource (TIMER) and were used to construct the correlational graphs between the TIICs and risk score by the CIBERSORT. Subsequently, the transcription factors (TFs) were gained in the Cistrome website and the differentially expressed TFs (DETFs) were achieved. Finally, the KEGG pathway analysis and GO analysis were performed to further understand the molecular mechanisms between DETFs and PDIRGs.Results: In our study, 5839 DEGs, 326 IRDEGs, and 31 prognosis-related IRDEGs (PIRDEGs) were identified. And 8 optimal PIRDEGs were employed to construct a prognostic risk model by multivariate Cox regression analysis. The correlation between risk genes and clinical characterizations and TIICs has verified that the prognostic model was effective in predicting the prognosis of HCC patients. Finally, several important immune-related pathways and molecular functions of the eight PIRDEGs were significantly enriched and there was a distinct association between the risk IRDEGs and TFs. Conclusion: The prognostic risk model showed a more valuable predicting role for HCC patients, and produced many novel therapeutic targets and strategies for HCC.


2020 ◽  
Vol 19 ◽  
pp. 153303382096357
Author(s):  
Xiaoyong Gong ◽  
Bobin Ning

Prostate cancer (PCa) is a highly malignant tumor, with increasing incidence and mortality rates worldwide. The aim of this study was to identify the prognostic lncRNAs and construct an lncRNA signature for PCa diagnosis by the interaction network between lncRNAs and protein-coding genes (PCGs). The differentially expressed lncRNAs (DElncRNAs) and PCGs (DEPCGs) between PCa and normal prostate tissues were screened from The Cancer Genome Atlas (TCGA) database. The DEPCGs were functionally annotated in terms of the enriched pathways. Weighted gene co-expression network analysis (WGCNA) of 104 PCa samples identified 15 co-expression modules, of which the Turquoise module was negatively correlated with cancer and included 5 key lncRNAs and 47 PCGs. KEGG pathway analyses of the core 47 PCGs showed significant enrichment in classic PCa-related pathways, and overlapped with the enriched pathways of the DEPCGs. LINC00857, LINC00900, LINC00908, LINC00900, SNHG3 and FENDRR were significantly associated with the survival of PCa and have not been reported previously. Finally, Multivariable Cox regression analysis was used to establish a prognostic risk formula, and the patients were accordingly stratified into the low- and high-risk groups. The latter had significantly worse OS compared to the low-risk group (P < 0.01), and the area under the receiver operating characteristic curve (ROC) of 14-year OS was 0.829. The accuracy of our prediction model was determined by calculating the corresponding concordance index (C-index) and risk curves. In conclusion, we established a 5-lncRNA prognostic signature that provides insights into the biological and clinical relevance of lncRNAs in PCa.


Vascular ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 643-654 ◽  
Author(s):  
Jing Xu ◽  
Yuejin Yang

Objective Atherosclerosis is a chronic inflammatory process characterized by the accumulation and formation of lipid-rich plaques within the layers of the arterial wall. Although numerous studies have reported the underlying pathogenesis, no data-based studies have been conducted to analyze the potential genes and immune cells infiltration in the different stages of atherosclerosis via bioinformatics analysis. Methods In this study, we downloaded GSE100927 and GSE28829 from NCBI-GEO database. Gene ontology and pathway enrichment were performed via the DAVID database. The protein interaction network was constructed via STRING. Enriched hub genes were analyzed by the Cytoscape software. The evaluation of the infiltrating immune cells in the dataset samples was performed by the CIBERSORT algorithm. Results We identified 114 common upregulated differentially expressed genes and 22 common downregulated differentially expressed genes. (adjust p value < 0.01 and log FC ≥ 1). A cluster of 10 genes including CYBA, SLC11A1, FCER1G, ITGAM, ITGB2, CD53, ITGAX, VAMP8, CLEC5A, and CD300A were found to be significant. Through the deconvolution algorithm CIBERSORT, we analyzed the significant alteration of immune cells infiltration in the progression of atherosclerosis with the threshold of the Wilcoxon test at p value <0.05. Conclusions These results may reveal the underlying correlations between genes and immune cells in atherosclerosis, which enable us to investigate the novel insights for the development of treatments and drugs.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xin Qiu ◽  
Qin-Han Hou ◽  
Qiu-Yue Shi ◽  
Hai-Xing Jiang ◽  
Shan-Yu Qin

BackgroundIntratumoral oxidative stress (OS) has been associated with the progression of various tumors. However, OS has not been considered a candidate therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers.MethodsWe compared gene expression profiles of PC samples and the transcriptome data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC. PC patients’ gene profile from the Gene Expression Omnibus (GEO) database was used as a validation cohort.ResultsA total of 148 differentially expressed OS-related genes in PC were used to construct a protein-protein interaction network. Univariate Cox regression analysis, least absolute shrinkage, selection operator analysis revealed seven hub prognosis-associated OS genes that served to construct a prognostic risk model. Based on integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy was validated in both cohorts, reliably predicted the overall survival of patients with PC and cancer progression. Further analysis revealed significant associations between seven hub gene expression levels and patient outcomes, which were validated at the protein level using the Human Protein Atlas database. A nomogram based on the expression of these seven hub genes exhibited prognostic value in PC.ConclusionOur study provides novel insights into PC pathogenesis and provides new genetic markers for prognosis prediction and clinical treatment personalization for PC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chao Li ◽  
Wu Yao ◽  
Congcong Zhao ◽  
Guo Yang ◽  
Jingjing Wei ◽  
...  

Background. Esophageal cancer is one of the most deadly malignant tumors. Among the common malignant tumors in the world, esophageal cancer is ranked seventh, which has a high mortality rate. Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of various tumors. lncRNAs can competitively bind microRNAs (miRNAs) with mRNA, which can regulate the expression level of the encoded gene at the posttranscriptional level. This regulatory mechanism is called the competitive endogenous RNA (ceRNA) hypothesis, and ceRNA has important research value in tumor-related research. However, the regulation of lncRNAs is less studied in the study of esophageal cancer. Methods. The Cancer Genome Atlas (TCGA) database was used to download transcriptome profiling data of esophageal cancer. Gene expression quantification data contains 160 cancer samples and 11 normal samples. These data were used to identify differentially expressed lncRNAs and mRNAs. miRNA expression data includes 185 cancer samples and 13 normal samples. The differentially expressed RNAs were identified using the edgeR package in R software. Then, the miRcode database was used to predict miRNAs that bind to lncRNAs. MiRTarBase, miRDB, and TargetScan databases were used to predict the target genes of miRNAs. Cytoscape software was used to draw ceRNA network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using DAVID 6.8. Finally, multifactor cox regression was used to screen lncRNAs related to prognosis. Results. We have screened 1331 DElncRNAs, 3193 DEmRNAs, and 162 DEmiRNAs. Among them, the ceRNA network contains 111 lncRNAs, 11 miRNAs, and 63 DEmRNAs. Finally, we established a prediction model containing three lncRNAs through multifactor Cox regression analysis. Conclusions. Our research screened out three independent prognostic lncRNAs from the ceRNA network and constructed a risk assessment model. This is helpful to understand the regulatory role of lncRNAs in esophageal cancer.


2020 ◽  
Author(s):  
Xinhong Liu ◽  
Fang Tan ◽  
Xingyao Long ◽  
Ruokun Yi ◽  
Dingyi Yang ◽  
...  

Abstract Background RNA binding proteins (RBPs) play an important role in a variety of cancers. However, the role of RBPs in colorectal adenocarcinoma (COAD) has not been studied. Integrated analysis of RBPs will provide a better understanding of disease genesis and new insights into COAD treatment. Methods The gene expression data and corresponding clinical information for COAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was used to screen for RBPs associated with COAD recurrence, and multivariate Cox proportional hazards regression analyses were used to identify genes that were associated with COAD recurrence. A nomogram was constructed to predict the recurrence of COAD, and a receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of the prediction models. The Human Protein Atlas database was used in prediction models to confirm the expression of key genes in COAD patients. Result A total of 177 differentially expressed RBPs was obtained, comprising 123 upregulated and 54 downregulated. GO and KEGG enrichment analysis showed that the differentially expressed RBPs were mainly related to mRNA metabolism, RNA processing and translation regulation. Seven RBP genes (TDRD6, POP1, TDRD7, PPARGC1A, LIN28B, LRRFIP2 and PNLDC1) were identified as prognosis-associated genes and were used to construct the prognostic model. Conclusion We constructed a COAD prognostic model through bioinformatics analysis, which indicated that prognostic model RBPs have a potential role in the diagnosis and prognosis of COAD. Moreover, the nomogram can effectively predict the 1-year, 3-year, and 5-year survival rate for COAD patients.


Sign in / Sign up

Export Citation Format

Share Document