scholarly journals The Interdisciplinary Stem Cell Institute’s Use of Food and Drug Administration-Expanded Access Guidelines to Provide Experimental Cell Therapy to Patients With Rare Serious Diseases

Author(s):  
Aisha Khan ◽  
Michael A. Bellio ◽  
Ivonne H. Schulman ◽  
Allan D. Levi ◽  
Bangon Longsomboon ◽  
...  

The U.S. Food and Drug Administration (FDA) provides guidance for expanded access to experimental therapies, which in turn plays an important role in the Twenty-first Century Cures Act mandate to advance cell-based therapy. In cases of incurable diseases where there is a lack of alternative treatment options, many patients seek access to cell-based therapies for the possibility of treatment responses demonstrated in clinical trials. Here, we describe the use of the FDA’s expanded access to investigational new drug (IND) to address rare and emergency conditions that include stiff-person syndrome, spinal cord injury, traumatic brain stem injury, complex congenital heart disease, ischemic stroke, and peripheral nerve injury. We have administered both allogeneic bone marrow-derived mesenchymal stem cell (MSC) and autologous Schwann cell (SC) therapy to patients upon emergency request using Single Patient Expanded Access (SPEA) INDs approved by the FDA. In this report, we present our experience with 10 completed SPEA protocols.

2012 ◽  
Vol 1 (11) ◽  
pp. 283-284
Author(s):  
Chris Paxos

Alzheimer's disease affects an estimated 35 million people worldwide, with over 5 million affected in the United States. Few medications are currently approved by the Food and Drug Administration (FDA) for the treatment of Alzheimer's disease; subsequently, patients and caregivers often look for additional treatment options. This article reviews studies evaluating the use of Ginkgo biloba and vitamin E for the treatment of Alzheimer's disease.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Aurel Popa-Wagner ◽  
Madalina Filfan ◽  
Adriana Uzoni ◽  
Pouya Pourgolafshan ◽  
Ana-Maria Buga

During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC), the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs), mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment.


2012 ◽  
Vol 1 (11) ◽  
pp. 825-832 ◽  
Author(s):  
Ellen G. Feigal ◽  
Katherine Tsokas ◽  
Jiwen Zhang ◽  
Marc V. Cromer ◽  
Kevin J. Whittlesey ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 749
Author(s):  
Shanmugam Muruganandan ◽  
Michael Wigerius

Strategies to create functional organs and tissues is of great interest for use in regenerative medicine in order to repair or replace the lost tissues due to injury, disease, as well as aging. Several new treatment options, including stem cell treatments and tissue-engineered substitutes for certain indications, have been approved by Food and Drug Administration (FDA) and are currently available. This special issue will cover new therapies and strategies that are currently being investigated under preclinical and clinical settings.


Author(s):  
Nidhi Puranik ◽  
Ananta Prasad Arukha ◽  
Shiv Kumar Yadav ◽  
Dhananjay Yadav ◽  
Jun O Jin

: Several human neurological disorders such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis; Huntington’s disease, spinal cord injury, multiple sclerosis, and brain stroke, are caused by the injury to neurons or glial cells. The recent years have witnessed the successful generation of neurons and glia cells driving efforts to develop stem-cell-based therapies for patients to combat a broad spectrum of human neurological diseases. The inadequacy of suitable cell types for cell replacement therapy in patients suffering from neurological disorders have hampered the development of this promising therapeutic approach. Attempts are thus being made to reconstruct viable neurons and glial cells from different stem cells such as the embryonic stem cells, mesenchymal stem cells, and neural stem cells. Dedicated research to cultivate stem cell-based brain transplantation therapies have been carried out. We aim at compiling the breakthroughs in the field of stem cell-based therapy for the treatment of neurodegenerative maladies, emphasizing on the shortcomings faced, victories achieved, and the future prospects of the therapy in clinical settings.


2018 ◽  
Vol 44 (2-3) ◽  
pp. 291-308 ◽  
Author(s):  
Margaret F. Riley

Regenerative medicine (“RM”) is a 21st century technology whose regulation has badly needed a 21st century cure. It is not clear that the 21st Century Cures Act (“Cures Act”) is that cure, but it has not been a poison. For some months prior to the passage of the Cures Act it seemed that it might be a catalyst for really endangering the field by allowing a flood of untested therapies to continue to enter the market. That, fortunately, did not happen. Thus far, the Cures Act has been a useful tonic; its effect on RM has been largely symbolic. But it has allowed the Food and Drug Administration (“FDA”) to redirect resources, and it demanded the quick adoption of guidance. That has allowed the Agency to finalize a regulatory framework that has been sorely needed. The evidentiary flexibility within the Cures Act is extremely important for the development of technologies that do not fit easily into the traditional approval rubric.


2021 ◽  
Vol 30 ◽  
pp. 096368972098824
Author(s):  
Iwan Jones ◽  
Liudmila N. Novikova ◽  
Mikael Wiberg ◽  
Leif Carlsson ◽  
Lev N. Novikov

Spinal cord injury results in irreversible tissue damage and permanent sensorimotor impairment. The development of novel therapeutic strategies that improve the life quality of affected individuals is therefore of paramount importance. Cell transplantation is a promising approach for spinal cord injury treatment and the present study assesses the efficacy of human embryonic stem cell–derived neural crest cells as preclinical cell-based therapy candidates. The differentiated neural crest cells exhibited characteristic molecular signatures and produced a range of biologically active trophic factors that stimulated in vitro neurite outgrowth of rat primary dorsal root ganglia neurons. Transplantation of the neural crest cells into both acute and chronic rat cervical spinal cord injury models promoted remodeling of descending raphespinal projections and contributed to the partial recovery of forelimb motor function. The results achieved in this proof-of-concept study demonstrates that human embryonic stem cell–derived neural crest cells warrant further investigation as cell-based therapy candidates for the treatment of spinal cord injury.


2020 ◽  
Vol 70 (Supplement_1) ◽  
pp. S51-S59
Author(s):  
Judith A Hewitt ◽  
Lynda L Lanning ◽  
Joseph L Campbell

Abstract Background Additional treatment options for pneumonic plague, the most severe form of infection by Yersinia pestis, are needed, as past US Food and Drug Administration (FDA) approvals were not based on clinical trials that meet today’s standards, and multiple drugs are sought to counter resistance or use in special populations. Due to the sporadic nature of outbreaks and the low number of pneumonic cases of disease, we sought FDA approval of antimicrobials for treatment under the Animal Efficacy Rule, where efficacy can be demonstrated in 1 or more well-characterized animal models that sufficiently represent human disease. Methods A model was developed in African green monkeys (AGMs) after challenge with a lethal dose of Y. pestis delivered as an aerosol, in 4 independent studies in 3 laboratories. The primary data points were bacteremia (daily), body temperature and heart rate (continuously monitored by telemetry), and survival. In antimicrobial efficacy studies, human-equivalent doses of gentamicin, ciprofloxacin, levofloxacin, and doxycycline were administered upon fever onset for 10 days. Results Disease in AGMs was similar to case reports of human disease. Fever was determined to be a reliable sign of disease and selected as a treatment trigger. Gentamicin was 60%–80% effective depending on the dose given to animals. Ciprofloxacin and levofloxacin were found to be >90% efficacious. These data were submitted to FDA and plague indications were approved. Doxycycline was less effective. Conclusions The AGM model of pneumonic plague is reproducible, well-characterized, and mimics human disease. It has been used to support plague indications for fluoroquinolones and to test the efficacy of additional antimicrobials.


2021 ◽  
Vol 2 (2) ◽  
pp. 519-537
Author(s):  
Mallesh Kurakula ◽  
Shashank Gorityala ◽  
Devang B. Patel ◽  
Pratap Basim ◽  
Bhaumik Patel ◽  
...  

Spinal cord injury (SCI) is one of the most complicated nervous system injuries with challenging treatment and recovery. Regenerative biomaterials such as chitosan are being reported for their wide use in filling the cavities, deliver curative drugs, and also provide adsorption sites for transplanted stem cells. Biomaterial scaffolds utilizing chitosan have shown certain therapeutic effects on spinal cord injury repair with some limitations. Chitosan-based delivery in stem cell transplantation is another strategy that has shown decent success. Stem cells can be directed to differentiate into neurons or glia in vitro. Stem cell-based therapy, biopolymer chitosan delivery strategies, and scaffold-based therapeutic strategies have been advancing as a combinatorial approach for spinal cord injury repair. In this review, we summarize the recent progress in the treatment strategies of SCI due to the use of bioactivity of chitosan-based drug delivery systems. An emphasis on the role of chitosan in neural regeneration has also been highlighted.


Sign in / Sign up

Export Citation Format

Share Document