scholarly journals AMPK Signaling in Energy Control, Cartilage Biology, and Osteoarthritis

Author(s):  
Dan Yi ◽  
Huan Yu ◽  
Ke Lu ◽  
Changshun Ruan ◽  
Changhai Ding ◽  
...  

The adenosine monophosphate (AMP)–activated protein kinase (AMPK) was initially identified as an enzyme acting as an “energy sensor” in maintaining energy homeostasis via serine/threonine phosphorylation when low cellular adenosine triphosphate (ATP) level was sensed. AMPK participates in catabolic and anabolic processes at the molecular and cellular levels and is involved in appetite-regulating circuit in the hypothalamus. AMPK signaling also modulates energy metabolism in organs such as adipose tissue, brain, muscle, and heart, which are highly dependent on energy consumption via adjusting the AMP/ADP:ATP ratio. In clinics, biguanides and thiazolidinediones are prescribed to patients with metabolic disorders through activating AMPK signaling and inhibiting complex I in the mitochondria, leading to a reduction in mitochondrial respiration and elevated ATP production. The role of AMPK in mediating skeletal development and related diseases remains obscure. In this review, in addition to discuss the emerging advances of AMPK studies in energy control, we will also illustrate current discoveries of AMPK in chondrocyte homeostasis, osteoarthritis (OA) development, and the signaling interaction of AMPK with other pathways, such as mTOR (mechanistic target of rapamycin), Wnt, and NF-κB (nuclear factor κB) under OA condition.

2011 ◽  
Vol 212 (3) ◽  
pp. 277-290 ◽  
Author(s):  
J Jeyabalan ◽  
M Shah ◽  
B Viollet ◽  
C Chenu

There is increasing evidence that osteoporosis, similarly to obesity and diabetes, could be another disorder of energy metabolism. AMP-activated protein kinase (AMPK) has emerged over the last decade as a key sensing mechanism in the regulation of cellular energy homeostasis and is an essential mediator of the central and peripheral effects of many hormones on the metabolism of appetite, fat and glucose. Novel work demonstrates that the AMPK signaling pathway also plays a role in bone physiology. Activation of AMPK promotes bone formationin vitroand the deletion of α or β subunit of AMPK decreases bone mass in mice. Furthermore, AMPK activity in bone cells is regulated by the same hormones that regulate food intake and energy expenditure through AMPK activation in the brain and peripheral tissues. AMPK is also activated by antidiabetic drugs such as metformin and thiazolidinediones (TZDs), which also impact on skeletal metabolism. Interestingly, TZDs have detrimental skeletal side effects, causing bone loss and increasing the risk of fractures, although the role of AMPK mediation is still unclear. These data are presented in this review that also discusses the potential roles of AMPK in bone as well as the possibility for AMPK to be a future therapeutic target for intervention in osteoporosis.


2011 ◽  
Vol 39 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. Grahame Hardie

It is essential to life that a balance is maintained between processes that produce ATP and those that consume it. An obvious way to do this would be to have systems that monitor the levels of ATP and ADP, although because of the adenylate kinase reaction (2ADP↔ATP+AMP), AMP is actually a more sensitive indicator of energy stress than ADP. Following the discoveries that glycogen phosphorylase and phosphofructokinase were regulated by AMP and ATP, Daniel Atkinson proposed that all enzymes at branch points between biosynthesis and degradation would be regulated by adenine nucleotides. This turned out to be correct, but what Atkinson did not anticipate was that sensing of nucleotides would, in most cases, be performed not by the metabolic enzymes themselves, but by a signalling protein, AMPK (AMP-activated protein kinase). AMPK occurs in essentially all eukaryotes and consists of heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits, of which the latter carries the nucleotide-binding sites. Once activated by a metabolic stress, it phosphorylates numerous targets that alter enzyme activity and gene expression to initiate corrective responses. In lower eukaryotes, it is critically involved in the responses to starvation for a carbon source. Because of its ability to switch cellular metabolism from anabolic to catabolic mode, AMPK has become a key drug target to combat metabolic disorders associated with overnutrition such as Type 2 diabetes, and some existing anti-diabetic drugs (e.g. metformin) and many ‘nutraceuticals’ work by activating AMPK, usually via inhibition of mitochondrial ATP production. AMPK activators also potentially have anticancer effects, and there is already evidence that metformin provides protection against the initiation of cancer. Whether AMPK activators can be used to treat existing cancer is less clear, because many tumour cells appear to have been selected for mutations that inactivate the AMPK system. However, if we can identify the various mechanisms by which this occurs, we may be able to find ways of overcoming it.


2006 ◽  
Vol 203 (7) ◽  
pp. 1665-1670 ◽  
Author(s):  
Peter Tamás ◽  
Simon A. Hawley ◽  
Rosemary G. Clarke ◽  
Kirsty J. Mustard ◽  
Kevin Green ◽  
...  

The adenosine monophosphate (AMP)–activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKα1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca2+ with Ca2+ ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca2+ stimulation of AMPK required the activity of Ca2+–calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca2+ signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it.


2014 ◽  
Vol 67 (9) ◽  
pp. 758-763 ◽  
Author(s):  
Sukriti Krishan ◽  
Des R Richardson ◽  
Sumit Sahni

The PRKAA1 gene encodes the catalytic α-subunit of 5′ AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor that maintains energy homeostasis within the cell and is activated when the AMP/ATP ratio increases. When activated, AMPK increases catabolic processes that increase ATP synthesis and inhibit anabolic processes that require ATP. Additionally, AMPK also plays a role in activating autophagy and inhibiting energy consuming processes, such as cellular growth and proliferation. Due to its role in energy metabolism, it could act as a potential target of many therapeutic drugs that could be useful in the treatment of several diseases, for example, diabetes. Moreover, AMPK has been shown to be involved in inhibiting tumour growth and metastasis, and has also been implicated in the pathology of neurodegenerative and cardiac disorders. Hence, a better understanding of AMPK and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target.


2020 ◽  
Author(s):  
Ada Admin ◽  
Louise Lantier ◽  
Ashley S. Williams ◽  
Ian M.Williams ◽  
Amanda Guerin ◽  
...  

Insulin resistance due to overnutrition places a burden on energy-producing pathways in skeletal muscle (SkM). Nevertheless, energy state is not compromised. The hypothesis that the energy sensor AMP-activated protein kinase (AMPK) is necessary to offset the metabolic burden of overnutrition was tested using chow-fed and high fat (HF)-fed SkM-specific AMPKa1a2 knockout (mdKO) mice and AMPKa1a2lox/lox littermates (WT). Lean mdKO and WT mice were phenotypically similar. HF-fed mice were equally obese and maintained lean mass regardless of genotype. Results did not support the hypothesis that AMPK is protective during overnutrition. Paradoxically, mdKO mice were more insulin sensitive. Insulin-stimulated SkM glucose uptake was ~two-fold greater in mdKO mice in vivo. Furthermore, insulin signaling, SkM GLUT4 translocation, hexokinase activity, and glycolysis were increased. AMPK and insulin signaling intersect at mTOR, a critical node for cell proliferation and survival. Basal mTOR activation was reduced by 50% in HF-fed mdKO mice, but was normalized by insulin-stimulation. Mitochondrial function was impaired in mdKO mice, but energy charge was preserved by AMP deamination. Results show a surprising reciprocity between SkM AMPK signaling and insulin action that manifests with diet-induced obesity, as insulin action is preserved to protect fundamental energetic processes in the muscle.


Author(s):  
Haleh Vaez ◽  
Hamid Soraya ◽  
Alireza Garjani ◽  
Tooba Gholikhani

Toll-like receptors (TLRs) are essential receptors of the innate immune system, playing a significant role in cardiovascular diseases. TLR4, with the highest expression among TLRs in the heart, has been investigated extensively for its critical role in different myocardial inflammatory conditions. Studies suggest that inhibition of TLR4 signaling pathways reduces inflammatory responses and even prevents additional injuries to the already damaged myocardium. Recent research results have led to a hypothesis that there may be a relation between TLR4 expression and 5' adenosine monophosphate-activated protein kinase (AMPK) signaling in various inflammatory conditions, including cardiovascular diseases. AMPK, as a cellular energy sensor, has been reported to show anti-inflammatory effects in various models of inflammatory diseases. AMPK, in addition to its physiological acts in the heart, plays an essential role in myocardial ischemia and hypoxia by activating various energy production pathways. Herein we will discuss the role of TLR4 and AMPK in cardiovascular diseases and a possible relation between TLRs and AMPK as a novel therapeutic target. In our opinion, AMPK-related TLR modulators will find application in treating different immune-mediated inflammatory disorders, especially inflammatory cardiac diseases, and present an option that will be widely used in clinical practice in the future.


2007 ◽  
Vol 293 (5) ◽  
pp. E1242-E1249 ◽  
Author(s):  
Ditte K. Klein ◽  
Henriette Pilegaard ◽  
Jonas T. Treebak ◽  
Thomas E. Jensen ◽  
Benoit Viollet ◽  
...  

5′-AMP-activated protein kinase (AMPK) was recently suggested to regulate pyruvate dehydrogenase (PDH) activity and thus pyruvate entry into the mitochondrion. We aimed to provide evidence for a direct link between AMPK and PDH in resting and metabolically challenged (exercised) skeletal muscle. Compared with rest, treadmill running increased AMPKα1 activity in α2KO mice (90%, P < 0.01) and increased AMPKα2 activity in wild-type (WT) mice (110%, P < 0.05), leading to increased AMPKα Thr172 (WT: 40%, α2KO: 100%, P < 0.01) and ACCβ Ser227 phosphorylation (WT: 70%, α2KO: 210%, P < 0.01). Compared with rest, exercise significantly induced PDH-E1α site 1 (WT: 20%, α2KO: 62%, P < 0.01) and site 2 (only α2KO: 83%, P < 0.01) dephosphorylation and PDHa [∼200% in both genotypes ( P < 0.01)]. Compared with WT, PDH dephosphorylation and activation was markedly enhanced in the α2KO mice both at rest and during exercise. The increased PDHa activity during exercise was associated with elevated glycolytic flux, and muscles from the α2KO mice displayed marked lactate accumulation and deranged energy homeostasis. Whereas mitochondrial DNA content was normal, the expression of several mitochondrial proteins was significantly decreased in muscle of α2KO mice. In isolated resting EDL muscles, activation of AMPK signaling by AICAR did not change PDH-E1α phosphorylation in either genotype. PDH is activated in mouse skeletal muscle in response to exercise and is independent of AMPKα2 expression. During exercise, α2KO muscles display deranged energy homeostasis despite enhanced glycolytic flux and PDHa activity. This may be linked to decreased mitochondrial oxidative capacity.


2017 ◽  
Vol 176 (5) ◽  
pp. R235-R246 ◽  
Author(s):  
Miguel López

AMP-activated protein kinase (AMPK) is a cellular gauge that is activated under conditions, such as low energy, increasing energy production and reducing energy waste. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence links hypothalamic AMPK with feeding, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), as well as muscle metabolism, hepatic function and glucose homeostasis. The relevance of these data is interesting from a therapeutic point of view as several agents with potential anti-obesity and/or antidiabetic effects, some currently in clinical use, such as nicotine, metformin and liraglutide are known to act through AMPK, either peripherally or centrally. Furthermore, the orexigenic and weight-gaining effects of the worldwide use of antipsychotic drugs (APDs), such as olanzapine, are also mediated by hypothalamic AMPK. Overall, this evidence makes hypothalamic AMPK signaling an interesting target for the drug development, with its potential for controlling both sides of the energy balance equation, namely feeding and energy expenditure through defined metabolic pathways.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
My Khanh Q. Huynh ◽  
Ann W. Kinyua ◽  
Dong Joo Yang ◽  
Ki Woo Kim

Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration.


2018 ◽  
Vol 15 (138) ◽  
pp. 20170774 ◽  
Author(s):  
D. Grahame Hardie

Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched off, thus restoring energy homeostasis. Drugs that modulate AMPK have great potential in the treatment of metabolic disorders such as obesity and Type 2 diabetes, and even cancer. Indeed, some existing drugs such as metformin and aspirin, which were derived from traditional herbal remedies, appear to work, in part, by activating AMPK.


Sign in / Sign up

Export Citation Format

Share Document