Toll-Like Receptor 4 (TLR4) and AMPK Relevance in Cardiovascular Disease

Author(s):  
Haleh Vaez ◽  
Hamid Soraya ◽  
Alireza Garjani ◽  
Tooba Gholikhani

Toll-like receptors (TLRs) are essential receptors of the innate immune system, playing a significant role in cardiovascular diseases. TLR4, with the highest expression among TLRs in the heart, has been investigated extensively for its critical role in different myocardial inflammatory conditions. Studies suggest that inhibition of TLR4 signaling pathways reduces inflammatory responses and even prevents additional injuries to the already damaged myocardium. Recent research results have led to a hypothesis that there may be a relation between TLR4 expression and 5' adenosine monophosphate-activated protein kinase (AMPK) signaling in various inflammatory conditions, including cardiovascular diseases. AMPK, as a cellular energy sensor, has been reported to show anti-inflammatory effects in various models of inflammatory diseases. AMPK, in addition to its physiological acts in the heart, plays an essential role in myocardial ischemia and hypoxia by activating various energy production pathways. Herein we will discuss the role of TLR4 and AMPK in cardiovascular diseases and a possible relation between TLRs and AMPK as a novel therapeutic target. In our opinion, AMPK-related TLR modulators will find application in treating different immune-mediated inflammatory disorders, especially inflammatory cardiac diseases, and present an option that will be widely used in clinical practice in the future.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Yu ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Jueun Oh ◽  
Deok Jeong ◽  
...  

Inflammation is a complex biological response of tissues to harmful stimuli such as pathogens, cell damage, or irritants. Inflammation is considered to be a major cause of most chronic diseases, especially in more than 100 types of inflammatory diseases which include Alzheimer's disease, rheumatoid arthritis, asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, hepatitis, and Parkinson's disease. Recently, an increasing number of studies have focused on inflammatory diseases. TBK1 is a serine/threonine-protein kinase which regulates antiviral defense, host-virus interaction, and immunity. It is ubiquitously expressed in mouse stomach, colon, thymus, and liver. Interestingly, high levels of active TBK1 have also been found to be associated with inflammatory diseases, indicating that TBK1 is closely related to inflammatory responses. Even though relatively few studies have addressed the functional roles of TBK1 relating to inflammation, this paper discusses some recent findings that support the critical role of TBK1 in inflammatory diseases and underlie the necessity of trials to develop useful remedies or therapeutics that target TBK1 for the treatment of inflammatory diseases.


2009 ◽  
Vol 117 (3) ◽  
pp. 95-109 ◽  
Author(s):  
Jianli Niu ◽  
Pappachan E. Kolattukudy

Many of the major diseases, including cardiovascular disease, are widely recognized as inflammatory diseases. MCP-1 (monocyte chemotactic protein-1) plays a critical role in the development of cardiovascular diseases. MCP-1, by its chemotactic activity, causes diapedesis of monocytes from the lumen to the subendothelial space where they become foam cells, initiating fatty streak formation that leads to atherosclerotic plaque formation. Inflammatory macrophages probably play a role in plaque rupture and the resulting ischaemic episode as well as restenosis after angioplasty. There is strong evidence that MCP-1 plays a major role in myocarditis, ischaemia/reperfusion injury in the heart and in transplant rejection. MCP-1 also plays a role in cardiac repair and manifests protective effects under certain conditions. Such protective effects may be due to the induction of protective ER (endoplasmic reticulum) stress chaperones by MCP-1. Under sustained ER stress caused by chronic exposure to MCP-1, the protection would break down resulting in the development of heart failure. MCP-1 is also involved in ischaemic angiogenesis. The recent advances in our understanding of the molecular mechanisms that might be involved in the roles that MCP-1 plays in cardiovascular disease are reviewed. The gene expression changes induced by the signalling events triggered by MCP-1 binding to its receptor include the induction of a novel zinc-finger protein called MCPIP (MCP-1-induced protein), which plays critical roles in the development of the pathophysiology caused by MCP-1 production. The role of the MCP-1/CCR2 (CC chemokine receptor 2) system in diabetes, which is a major risk factor for cardiovascular diseases, is also reviewed briefly. MCP-1/CCR2- and/or MCPIP-targeted therapeutic approaches to intervene in inflammatory diseases, including cardiovascular diseases, may be feasible.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kangfeng Jiang ◽  
Weiqi Ye ◽  
Qian Bai ◽  
Jinyin Cai ◽  
Haichong Wu ◽  
...  

Staphylococcus aureus (S. aureus), a notorious pathogenic bacterium prevalent in the environment, causes a wide range of inflammatory diseases such as endometritis. Endometritis is an inflammatory disease in humans and mammals, which prolongs uterine involution and causes great economic losses. MiR-30a plays an importan trole in the process of inflammation; however, the regulatory role of miR-30a in endometritis is still unknown. Here, we first noticed that there was an increased level of miR-30a in uterine samples of cows with endometritis. And then, bovine endometrial epithelial (BEND) cells stimulated with the virulence factor lipoteichoic acid (LTA) from S. aureus were used as an in vitro endometritis model to explore the potential role of miR-30a in the pathogenesis of endometritis. Our data showed that the induction of the miR-30a expression is dependent on NF-κB activation, and its overexpression significantly decreased the levels of IL-1β and IL-6. Furthermore, we observed that the overexpression of miR-30a inhibited its translation by binding to 3 ′ − UTR of MyD88 mRNA, thus preventing the activation of Nox2 and NF-κB and ROS accumulation. Meanwhile, in vivo studies further revealed that upregulation of miR-30a using chemically synthesized agomirs alleviates the inflammatory conditions in an experimental mouse model of endometritis, as indicated by inhibition of ROS and NF-κB. Taken together, these findings highlight that miR-30a can attenuate LTA-elicited oxidative stress and inflammatory responses through the MyD88/Nox2/ROS/NF-κB pathway and may aid the future development of novel therapies for inflammatory diseases caused by S. aureus, including endometritis.


2019 ◽  
Vol 25 (27) ◽  
pp. 2909-2918 ◽  
Author(s):  
Joanna Giemza-Stokłosa ◽  
Md. Asiful Islam ◽  
Przemysław J. Kotyla

Background:: Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response. Methods:: Different electronic databases were searched in a non-systematic way to find out the literature of interest. Results:: The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still’s diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm. Conclusion:: This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.


2019 ◽  
Vol 16 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Hamid Farhang ◽  
Laleh Sharifi ◽  
Mohammad Mehdi Soltan Dallal ◽  
Mona Moshiri ◽  
Zahra Norouzbabaie ◽  
...  

Background: The non-steroidal anti-inflammatory drugs (NSAIDs) play crucial role in the controlling of inflammatory diseases. Due to the vast side effects of NSAIDs, its use is limited. G2013 or &amp;#945;-L-Guluronic Acid is a new NSAID with immunomodulatory features. Objectives: Considering the leading role of TLRs in inflammatory responses, in this study, we aimed to evaluate G2013 cytotoxicity and its effect on the expression of TLR2 and TLR4 molecules. Methods: HEK293-TLR2 and HEK293-TLR4 cells were cultured and seeded on 96-well cell plate, and MTT assay was performed for detecting the viability of the cells after treatment with different concentrations of G2013. HT29 cells were grown and treated with low and high doses of G2013. After total RNA extraction and cDNA synthesis, quantitative real-time PCR were performed to assess the TLR2 and TLR4 mRNA synthesis. Results: We found that concentrations of ≤125 &amp;#181;g/ml of G2013 had no apparent cytotoxicity effect on the HEK293-TLR2 and -TLR4 cells. Our results indicated that after G2013 treatment (5 &amp;#181;g/ml) in HT29 cells, TLR2 and TLR4 mRNA expression decreased significantly compared with the untreated control group (p=0.02 and p=0.001 respectively). Conclusion: The results of this study revealed that G2013 can down regulate the TLR2 and TLR4 gene expression and exerts its inhibitory effect. Our findings are parallel to our previous finding which showed G2013 ability to down regulate the signaling pathway of TLRs. However, further studies are needed to identify the molecular mechanism of G2013.<p&gt;


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana Prieto-Peña ◽  
Sara Remuzgo-Martínez ◽  
Fernanda Genre ◽  
Verónica Pulito-Cueto ◽  
Belén Atienza-Mateo ◽  
...  

AbstractCytokines signalling pathway genes are crucial factors of the genetic network underlying the pathogenesis of Immunoglobulin-A vasculitis (IgAV), an inflammatory vascular condition. An influence of the interleukin (IL)33- IL1 receptor like (IL1RL)1 signalling pathway on the increased risk of several immune-mediated diseases has been described. Accordingly, we assessed whether the IL33-IL1RL1 pathway represents a novel genetic risk factor for IgAV. Three tag polymorphisms within IL33 (rs3939286, rs7025417 and rs7044343) and three within IL1RL1 (rs2310173, rs13015714 and rs2058660), that also were previously associated with several inflammatory diseases, were genotyped in 380 Caucasian IgAV patients and 845 matched healthy controls. No genotypes or alleles differences were observed between IgAV patients and controls when IL33 and IL1RL1 variants were analysed independently. Likewise, no statistically significant differences were found in IL33 or IL1RL1 genotype and allele frequencies when IgAV patients were stratified according to the age at disease onset or to the presence/absence of gastrointestinal (GI) or renal manifestations. Similar results were disclosed when IL33 and IL1RL1 haplotypes were compared between IgAV patients and controls and between IgAV patients stratified according to the clinical characteristics mentioned above. Our results suggest that the IL33-IL1RL1 signalling pathway does not contribute to the genetic network underlying IgAV.


2021 ◽  
Vol 22 (9) ◽  
pp. 4370
Author(s):  
Cássia de Fáveri ◽  
Paula M. Poeta Fermino ◽  
Anna P. Piovezan ◽  
Lia K. Volpato

The pathogenesis of endometriosis is still controversial, although it is known that the inflammatory immune response plays a critical role in this process. The resolution of inflammation is an active process where the activation of endogenous factors allows the host tissue to maintain homeostasis. The mechanisms by which pro-resolving mediators (PRM) act in endometriosis are still little explored. Thus, this integrative review aims to synthesize the available content regarding the role of PRM in endometriosis. Experimental and in vitro studies with Lipoxin A4 demonstrate a potential inhibitory effect on endometrial lesions’ progression, attenuating pro-inflammatory and angiogenic signals, inhibiting proliferative and invasive action suppressing intracellular signaling induced by cytokines and estradiol, mainly through the FPR2/ALX. Investigations with Resolvin D1 demonstrated the inhibition of endometrial lesions and decreased pro-inflammatory factors. Annexin A1 is expressed in the endometrium and is specifically present in women with endometriosis, although the available studies are still inconsistent. Thus, we believe there is a gap in knowledge regarding the PRM pathways in patients with endometriosis. It is important to note that these substances’ therapeutic potential is evident since the immune and abnormal inflammatory responses play an essential role in endometriosis development and progression.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Se Eun Byeon ◽  
Young-Su Yi ◽  
Jueun Oh ◽  
Byong Chul Yoo ◽  
Sungyoul Hong ◽  
...  

Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Francesca Colazzo ◽  
Paolo Gelosa ◽  
Elena Tremoli ◽  
Luigi Sironi ◽  
Laura Castiglioni

Cysteinyl leukotrienes (CysLTs) are potent lipid inflammatory mediators synthesized from arachidonic acid, through the 5-lipoxygenase (5-LO) pathway. Owing to their properties, CysLTs play a crucial role in the pathogenesis of inflammation; therefore, CysLT modifiers as synthesis inhibitors or receptor antagonists, central in asthma management, may become a potential target for the treatment of other inflammatory diseases such as the cardiovascular disorders. 5-LO pathway activation and increased expression of its mediators and receptors are found in cardiovascular diseases. Moreover, the cardioprotective effects observed by using CysLT modifiers are promising and contribute to elucidate the link between CysLTs and cardiovascular disease. The aim of this review is to summarize the state of present research about the role of the CysLTs in the pathogenesis and progression of atherosclerosis and myocardial infarction.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sung Ryul Lee

Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.


Sign in / Sign up

Export Citation Format

Share Document