scholarly journals Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation

Author(s):  
Olatunde Omotoso ◽  
Vadim N. Gladyshev ◽  
Xuming Zhou

Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.

Author(s):  
В.А. Бывальцев ◽  
И.А. Степанов ◽  
Е.Г. Белых ◽  
А.И. Яруллина

Цель обзора - анализ современных данных литературы о нарушении внутриклеточных сигнальных путей, играющих ведущую роль в развитии менингиом, генетических и молекулярных профилях данной группы опухолей. К настоящему времени изучено множество аберрантных сигнальных внутриклеточных путей, которые играют важнейшую роль в развитии менингиом головного мозга. Четкое понимание поврежденных внутриклеточных каскадов поможет изучить влияние генетических мутаций и их эффектов на менингиомогенез. Подробное исследование генетического и молекулярного профиля менингиом позволит сделать первый уверенный шаг в разработке более эффективных методов лечения данной группы интракраниальных опухолей. Хромосомы 1, 10, 14, 22 и связанные с ними генные мутации ответственны за рост и прогрессию менингиом. Предполагается, что только через понимание данных генетических повреждений будут реализованы новейшие эффективные методы лечения. Будущая терапия будет включать в себя комбинации таргетных молекулярных агентов, в том числе генную терапию, малые интерферирующие РНК, протонную терапию и другие методы воздействия, как результат дальнейшего изучения генетических и биологических изменений, характерных для менингеальных опухолей. Meningiomas are by far the most common tumors arising from the meninges. A myriad of aberrant signaling pathways involved with meningioma tumorigenesis, have been discovered. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis. An understanding of the genetic and molecular profile of meningioma would provide a valuable first step towards developing more effective treatments for this intracranial tumor. Chromosomes 1, 10, 14, 22, their associated genes, have been linked to meningioma proliferation and progression. It is presumed that through an understanding of these genetic factors, more educated meningioma treatment techniques can be implemented. Future therapies will include combinations of targeted molecular agents including gene therapy, si-RNA mediation, proton therapy, and other approaches as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas.


Cephalalgia ◽  
2002 ◽  
Vol 22 (8) ◽  
pp. 624-632 ◽  
Author(s):  
E Loder

Susceptibility to migraine is determined by genetic factors and is therefore subject to the forces of natural selection. Migraine is a common and ancient disorder whose prevalence may be increasing, suggesting that a migraine-prone nervous system may be associated with reproductive or survival advantages. Five evolutionary explanations are reviewed that might account for the persistence of migraine: (i) migraine as a defence mechanism; (ii) migraine as a result of conflict with other organisms; (iii) migraine as result of novel environmental factors; (iv) migraine as a trade-off between genetic harms and benefits; and (v) migraine as a design constraint. An evolutionary perspective on migraine allows the generation of important hypotheses about the disorder and suggests rewarding possibilities for further research.


2018 ◽  
Vol 68 (3) ◽  
pp. 227-246
Author(s):  
Nico M. van Straalen

AbstractEvolution acts through a combination of four different drivers: (1) mutation, (2) selection, (3) genetic drift, and (4) developmental constraints. There is a tendency among some biologists to frame evolution as the sole result of natural selection, and this tendency is reinforced by many popular texts. “The Naked Ape” by Desmond Morris, published 50 years ago, is no exception. In this paper I argue that evolutionary biology is much richer than natural selection alone. I illustrate this by reconstructing the evolutionary history of five different organs of the human body: foot, pelvis, scrotum, hand and brain. Factors like developmental tinkering, by-product evolution, exaptation and heterochrony are powerful forces for body-plan innovations and the appearance of such innovations in human ancestors does not always require an adaptive explanation. While Morris explained the lack of body hair in the human species by sexual selection, I argue that molecular tinkering of regulatory genes expressed in the brain, followed by positive selection for neotenic features, may have been the driving factor, with loss of body hair as a secondary consequence.


2021 ◽  
Vol 13 (2) ◽  
pp. 145-152
Author(s):  
Mohammad Mahdi Hatef ◽  

Evolutionary models for scientific change are generally based on an analogy between scientific changes and biological evolution. Some dissimilarity cases, however, challenge this analogy. An issue discussed in this essay is that despite natural evolution, which is currently considered to be non-globally progressive, science is a phenomenon that we understand as globally progressive. David Hull's solution to this disanalogy is to trace the difference back to their environments, in which processes of natural selection and conceptual selection occur. I will provide two arguments against this solution, showing that Hull's formulation of natural selection prohibits him from removing the environment from the selection process. Then I point to a related tension in his theory, between realism and externalism in science, and give some suggestions to solve these tensions.


Author(s):  
Anne Barton

Genetic factors are important in predisposing to nearly all of the conditions managed by rheumatologists; indeed, musculoskeletal diseases, like other complex diseases, are thought to be caused by environmental triggers in genetically susceptible individuals. Studying genetic susceptibility factors is more straightforward than environmental factors because, first, genetic changes are stable and do not vary throughout life; second, genetic changes exist before disease onset and so could be causative rather than occurring as a result of disease; and, third, genetic variation is easy to measure reliably using modern technologies. By comparison, environmental exposures can occur many years before disease onset, may vary during life, and are hard to accurately capture and measure. Enormous progress has been made in recent years in identifying susceptibility genes. This knowledge may allow better targeting of available therapies, the development of novel therapies, and an improved understanding of what determines disease severity in individual patients. In this chapter, the basic concepts in genetics are explained.


1986 ◽  
Vol 8 (1-2) ◽  
pp. 10-12
Author(s):  
Charles Hoff

By the 1950s, revolutionary advances in the basic biological sciences began to have a significant impact on the theory, methods, scientific rigor and scope of physical anthropology. The first of these was the development of Neo-Darwinian evolutionary theory which integrated Medelian genetics, Pearsonian biometrics, evolution by mutation, drift and natural selection, and incorporated these and other genetic concepts into a unified quantitative evolutionary model.


1994 ◽  
Vol 2 (4) ◽  
pp. 304-328 ◽  
Author(s):  
George T. Baker ◽  
George R. Martin

Aging is characterized by numerous physical, physiological, biochemical, and molecular changes. The rates at which aging processes occur are highly variable among individuals and are thought to be governed by both environmental and genetic factors. Lifestyle factors such as exercise, dietary, and smoking habits have been demonstrated to alter many of the changes usually associated with human aging. However, at present caloric restriction is the only experimental paradigm that has consistently been demonstrated in animal models to extend not only physiological vigor but also life span. The positive effects of exercise on physiological fitness and the reduction in the risks of certain diseases have been well documented. However, its effects on life span are not as clear. This article explores some of the basic mechanisms thought to be involved causally in the processes of aging, and outlines current and potential interventive strategies to retard or ameliorate the rates of decline in physiological function with advancing age.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikolaos Vakirlis ◽  
Omer Acar ◽  
Brian Hsu ◽  
Nelson Castilho Coelho ◽  
S. Branden Van Oss ◽  
...  

AbstractRecent evidence demonstrates that novel protein-coding genes can arise de novo from non-genic loci. This evolutionary innovation is thought to be facilitated by the pervasive translation of non-genic transcripts, which exposes a reservoir of variable polypeptides to natural selection. Here, we systematically characterize how these de novo emerging coding sequences impact fitness in budding yeast. Disruption of emerging sequences is generally inconsequential for fitness in the laboratory and in natural populations. Overexpression of emerging sequences, however, is enriched in adaptive fitness effects compared to overexpression of established genes. We find that adaptive emerging sequences tend to encode putative transmembrane domains, and that thymine-rich intergenic regions harbor a widespread potential to produce transmembrane domains. These findings, together with in-depth examination of the de novo emerging YBR196C-A locus, suggest a novel evolutionary model whereby adaptive transmembrane polypeptides emerge de novo from thymine-rich non-genic regions and subsequently accumulate changes molded by natural selection.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mario López-Pérez ◽  
Jane M. Jayakumar ◽  
Jose M. Haro-Moreno ◽  
Asier Zaragoza-Solas ◽  
Geethika Reddi ◽  
...  

ABSTRACTVibrio vulnificus, an opportunistic pathogen, is the causative agent of a life-threatening septicemia and a rising problem for aquaculture worldwide. The genetic factors that differentiate its clinical and environmental strains remain enigmatic. Furthermore, clinical strains have emerged from every clade ofV. vulnificus. In this work, we investigated the underlying genomic properties and population dynamics of theV. vulnificusspecies from an evolutionary and ecological point of view. Genome comparisons and bioinformatic analyses of 113 V. vulnificusisolates indicate that the population ofV. vulnificusis made up of four different clusters. We found evidence that recombination and gene flow between the two largest clusters (cluster 1 [C1] and C2) have drastically decreased to the point where they are diverging independently. Pangenome and phenotypic analyses showed two markedly different lifestyles for these two clusters, indicating commensal (C2) and bloomer (C1) ecotypes, with differences in carbohydrate utilization, defense systems, and chemotaxis, among other characteristics. Nonetheless, we identified frequent intra- and interspecies exchange of mobile genetic elements (e.g., antibiotic resistance plasmids, novel “chromids,” or two different and concurrent type VI secretion systems) that provide high levels of genetic diversity in the population. Surprisingly, we identified strains from both clusters in the mucosa of aquaculture species, indicating that manmade niches are bringing strains from the two clusters together. We propose an evolutionary model ofV. vulnificusthat could be broadly applicable to other pathogenic vibrios and facultative bacterial pathogens to pursue strategies to prevent their infections and emergence.IMPORTANCEVibrio vulnificusis an emergent marine pathogen and is the cause of a deadly septicemia. However, the genetic factors that differentiate its clinical and environmental strains and its several biotypes remain mostly enigmatic. In this work, we investigated the underlying genomic properties and population dynamics of theV. vulnificusspecies to elucidate the traits that make these strains emerge as a human pathogen. The acquisition of different ecological determinants could have allowed the development of highly divergent clusters with different lifestyles within the same environment. However, we identified strains from both clusters in the mucosa of aquaculture species, indicating that manmade niches are bringing strains from the two clusters together, posing a potential risk of recombination and of emergence of novel variants. We propose a new evolutionary model that provides a perspective that could be broadly applicable to other pathogenic vibrios and facultative bacterial pathogens to pursue strategies to prevent their infections.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alaattin Kaya ◽  
Cheryl Zi Jin Phua ◽  
Mitchell Lee ◽  
Lu Wang ◽  
Alexander Tyshkovskiy ◽  
...  

To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan. Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in replicative lifespan across wild yeast isolates, as well as genes, metabolites and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism and mitochondrial function in long-lived strains. Overall, our multi-omic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.


Sign in / Sign up

Export Citation Format

Share Document