scholarly journals Autophagy and Aging: Roles in Skeletal Muscle, Eye, Brain and Hepatic Tissue

Author(s):  
Ping Li ◽  
Yuanzheng Ma ◽  
Chengwei Yu ◽  
Shoutong Wu ◽  
Kai Wang ◽  
...  

Autophagy is an evolutionary conserved degradative process contributing to cytoplasm quality control, metabolic recycling and cell defense. Aging is a universal phenomenon characterized by the progressive accumulation of impaired molecular and reduced turnover of cellular components. Recent evidence suggests a unique role for autophagy in aging and age-related disease. Indeed, autophagic activity declines with age and enhanced autophagy may prevent the progression of many age-related diseases and prolong life span. All tissues experience changes during aging, while the role of autophagy in different tissues varies. This review summarizes the links between autophagy and aging in the whole organism and discusses the physiological and pathological roles of autophagy in the aging process in tissues such as skeletal muscle, eye, brain, and liver.

Author(s):  
Yan Zhao ◽  
Jason Cholewa ◽  
Huayu Shang ◽  
Yueqin Yang ◽  
Xiaomin Ding ◽  
...  

Skeletal muscle anabolic resistance (i.e., the decrease in muscle protein synthesis (MPS) in response to anabolic stimuli such as amino acids and exercise) has been identified as a major cause of age-related sarcopenia, to which blunted nutrition-sensing contributes. In recent years, it has been suggested that a leucine sensor may function as a rate-limiting factor in skeletal MPS via small-molecule GTPase. Leucine-sensing and response may therefore have important therapeutic potential in the steady regulation of protein metabolism in aging skeletal muscle. This paper systematically summarizes the three critical processes involved in the leucine-sensing and response process: (1) How the coincidence detector mammalian target of rapamycin complex 1 localizes on the surface of lysosome and how its crucial upstream regulators Rheb and RagB/RagD interact to modulate the leucine response; (2) how complexes such as Ragulator, GATOR, FLCN, and TSC control the nucleotide loading state of Rheb and RagB/RagD to modulate their functional activity; and (3) how the identified leucine sensor leucyl-tRNA synthetase (LARS) and stress response protein 2 (Sestrin2) participate in the leucine-sensing process and the activation of RagB/RagD. Finally, we discuss the potential mechanistic role of exercise and its interactions with leucine-sensing and anabolic responses.


2013 ◽  
pp. 1-9
Author(s):  
C. TOMAS-ZAPICO ◽  
E. IGLESIAS-GUTIERREZ ◽  
B. FERNANDEZ-GARCIA ◽  
D. DE GONZALO-CALVO

Severe oxidative stress is a relevant risk factor for major deleterious health-related events in olderpeople and is thought to be an important contributor to age-related disease. Literature has suggested oxidativestress as a therapeutic target for mitigating the biological decline and attenuating the occurrence of adverseclinical events in aged individuals. However, definitive treatments are not known. Regular and moderate physicalactivity has been proposed as possible intervention for slowing age-related decline. This healthy strategy presentsa wide range of beneficial aspects for elderly, from the reduction of morbidity, disability, frailty and mortalityrates to treatment of many age-related disorders. Importantly, the global benefits on health are not shared by anyother strategies. Nevertheless, the physiological basis by which exercise produces its benefits to the organism isnot fully understood. This review summarizes the evidence for the role of physical activity as potential healthyintervention for mitigating the negative aspects of aging through the modulation of the oxidative mechanisms.


2020 ◽  
Vol 21 (15) ◽  
pp. 5236 ◽  
Author(s):  
Evelyn Ferri ◽  
Emanuele Marzetti ◽  
Riccardo Calvani ◽  
Anna Picca ◽  
Matteo Cesari ◽  
...  

Skeletal muscle aging is associated with a significant loss of skeletal muscle strength and power (i.e., dynapenia), muscle mass and quality of life, a phenomenon known as sarcopenia. This condition affects nearly one-third of the older population and is one of the main factors leading to negative health outcomes in geriatric patients. Notwithstanding the exact mechanisms responsible for sarcopenia are not fully understood, mitochondria have emerged as one of the central regulators of sarcopenia. In fact, there is a wide consensus on the assumption that the loss of mitochondrial integrity in myocytes is the main factor leading to muscle degeneration. Mitochondria are also key players in senescence. It has been largely proven that the modulation of mitochondrial functions can induce the death of senescent cells and that removal of senescent cells improves musculoskeletal health, quality, and function. In this review, the crosstalk among mitochondria, cellular senescence, and sarcopenia will be discussed with the aim to elucidate the role that the musculoskeletal cellular senescence may play in the onset of sarcopenia through the mediation of mitochondria.


2005 ◽  
Vol 35 (6) ◽  
pp. 473-483 ◽  
Author(s):  
Amie J Dirks ◽  
Christiaan Leeuwenburgh

2007 ◽  
Vol 210 (22) ◽  
pp. 3931-3939 ◽  
Author(s):  
R. C. Drewes ◽  
M. S. Hedrick ◽  
S. S. Hillman ◽  
P. C. Withers

2016 ◽  
Vol 5 (3) ◽  
pp. 182-186 ◽  
Author(s):  
Dae Yun Seo ◽  
Sung Ryul Lee ◽  
Nari Kim ◽  
Kyung Soo Ko ◽  
Byoung Doo Rhee ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuki Saito ◽  
Takako S. Chikenji

Skeletal muscle undergoes vigorous tissue remodeling after injury. However, aging, chronic inflammatory diseases, sarcopenia, and neuromuscular disorders cause muscle loss and degeneration, resulting in muscular dysfunction. Cellular senescence, a state of irreversible cell cycle arrest, acts during normal embryonic development and remodeling after tissue damage; when these processes are complete, the senescent cells are eliminated. However, the accumulation of senescent cells is a hallmark of aging tissues or pathological contexts and may lead to progressive tissue degeneration. The mechanisms responsible for the effects of senescent cells have not been fully elucidated. Here, we review current knowledge about the beneficial and detrimental effects of senescent cells in tissue repair, regeneration, aging, and age-related disease, especially in skeletal muscle. We also discuss how senescence of muscle stem cells and muscle-resident fibro-adipogenic progenitors affects muscle pathologies or regeneration, and consider the possibility that immunosenescence leads to muscle pathogenesis. Finally, we explore senotherapy, the therapeutic targeting of senescence to treat age-related disease, from the standpoint of improving muscle regeneration.


Sign in / Sign up

Export Citation Format

Share Document