scholarly journals Human Telomerase RNA Protein Encoded by Telomerase RNA is Involved in Metabolic Responses

Author(s):  
Viktoriia Shliapina ◽  
Mariia Koriagina ◽  
Daria Vasilkova ◽  
Vadim Govorun ◽  
Olga Dontsova ◽  
...  

Cell proliferation is associated with increased energy and nutrients consumption. Metabolism switch from oxidative phosphorylation to glycolysis and telomerase activity are induced during stimulation of proliferation, such as tumorigenesis, immune cell activation, and stem cell differentiation, among others. Telomerase RNA is one of the core components of the telomerase complex and participates in survival mechanisms that are activated under stress conditions. Human telomerase RNA protein (hTERP) is encoded by telomerase RNA and has been recently shown to be involved in autophagy regulation. In this study, we demonstrated the role of hTERP in the modulation of signaling pathways regulating autophagy, protein biosynthesis, and cell proliferation. The AMPK signaling pathway was affected in cells deficient of hTERP and when hTERP was overexpressed. The appearance of hTERP is important for metabolism switching associated with the accelerated proliferation of cells in healthy and pathological processes. These findings demonstrate the connection between telomerase RNA biogenesis and function and signaling pathways.

1996 ◽  
Vol 16 (7) ◽  
pp. 3765-3772 ◽  
Author(s):  
D Broccoli ◽  
L A Godley ◽  
L A Donehower ◽  
H E Varmus ◽  
T de Lange

Activation of telomerase in human cancers is thought to be necessary to overcome the progressive loss of telomeric DNA that accompanies proliferation of normal somatic cells. According to this model, telomerase provides a growth advantage to cells in which extensive terminal sequence loss threatens viability. To test these ideas, we have examined telomere dynamics and telomerase activation during mammary tumorigenesis in mice carrying a mouse mammary tumor virus long terminal repeat-driven Wnt-1 transgene. We also analyzed Wnt-1-induced mammary tumors in mice lacking p53 function. Normal mammary glands, hyperplastic mammary glands, and mammary carcinomas all had the long telomeres (20 to 50 kb) typical of Mus musculus and did not show telomere shortening during tumor development. Nevertheless, telomerase activity and the RNA component of the enzyme were consistently upregulated in Wnt-1-induced mammary tumors compared with normal and hyperplastic tissues. The upregulation of telomerase activity and RNA also occurred during tumorigenesis in p53-deficient mice. The expression of telomerase RNA correlated strongly with histone H4 mRNA in all normal tissues and tumors, indicating that the RNA component of telomerase is regulated with cell proliferation. Telomerase activity in the tumors was elevated to a greater extent than telomerase RNA, implying that the enzymatic activity of telomerase is regulated at additional levels. Our data suggest that the mechanism of telomerase activation in mouse mammary tumors is not linked to global loss of telomere function but involves multiple regulatory events including upregulation of telomerase RNA in proliferating cells.


2000 ◽  
Vol 275 (29) ◽  
pp. 22568-22573 ◽  
Author(s):  
Kenkichi Masutomi ◽  
Shuichi Kaneko ◽  
Naoyuki Hayashi ◽  
Tatsuya Yamashita ◽  
Yukihiro Shirota ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245287
Author(s):  
Arjun Khunger ◽  
Erin Piazza ◽  
Sarah Warren ◽  
Thomas H. Smith ◽  
Xing Ren ◽  
...  

Patients with locally/regionally advanced melanoma were treated with neoadjuvant combination immunotherapy with high-dose interferon α-2b (HDI) and ipilimumab in a phase I clinical trial. Tumor specimens were obtained prior to the initiation of neoadjuvant therapy, at the time of surgery and progression if available. In this study, gene expression profiles of tumor specimens (N = 27) were investigated using the NanoString nCounter® platform to evaluate associations with clinical outcomes (pathologic response, radiologic response, relapse-free survival (RFS), and overall survival (OS)) and define biomarkers associated with tumor response. The Tumor Inflammation Signature (TIS), an 18-gene signature that enriches for response to Programmed cell death protein 1 (PD-1) checkpoint blockade, was also evaluated for association with clinical response and survival. It was observed that neoadjuvant ipilimumab-HDI therapy demonstrated an upregulation of immune-related genes, chemokines, and transcription regulator genes involved in immune cell activation, function, or cell proliferation. Importantly, increased expression of baseline pro-inflammatory genes CCL19, CD3D, CD8A, CD22, LY9, IL12RB1, C1S, C7, AMICA1, TIAM1, TIGIT, THY1 was associated with longer OS (p < 0.05). In addition, multiple genes that encode a component or a regulator of the extracellular matrix such as MMP2 and COL1A2 were identified post-treatment as being associated with longer RFS and OS. In all baseline tissues, high TIS scores were associated with longer OS (p = 0.0166). Also, downregulated expression of cell proliferation-related genes such as CUL1, CCND1 and AAMP at baseline was associated with pathological and radiological response (unadjusted p < 0.01). In conclusion, we identified numerous genes that play roles in multiple biological pathways involved in immune activation, immune suppression and cell proliferation correlating with pathological/radiological responses following neoadjuvant immunotherapy highlighting the complexity of immune responses modulated by immunotherapy. Our observations suggest that TIS may be a useful biomarker for predicting survival outcomes with combination immunotherapy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hua Huang ◽  
Vanessa Zuzarte-Luis ◽  
Gabriela Fragoso ◽  
Annie Calvé ◽  
Tuan Anh Hoang ◽  
...  

AbstractIron homeostasis is an essential biological process that ensures the tissue distribution of iron for various cellular processes. As the major producer of hepcidin, the liver is central to the regulation of iron metabolism. The liver is also home to many immune cells, which upon activation may greatly impact iron metabolism. Here, we focus on the role of invariant natural killer T (iNKT) cells, a subset of T lymphocytes that, in mice, is most abundant in the liver. Activation of iNKT cells with the prototypical glycosphingolipid antigen, α-galactosylceramide, resulted in immune cell proliferation and biphasic changes in iron metabolism. This involved an early phase characterized by hypoferremia, hepcidin induction and ferroportin suppression, and a second phase associated with strong suppression of hepcidin despite elevated levels of circulating and tissue iron. We further show that these changes in iron metabolism are fully dependent on iNKT cell activation. Finally, we demonstrate that the biphasic regulation of hepcidin is independent of NK and Kupffer cells, and is initially driven by the STAT3 inflammatory pathway, whereas the second phase is regulated by repression of the BMP/SMAD signaling pathway. These findings indicate that iNKT activation and the resulting cell proliferation influence iron homeostasis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4142-4142
Author(s):  
Rajendra N Damle ◽  
Sonal Temburni ◽  
Ryon M. Andersen ◽  
Jacqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the clonal amplification of CD5-expressing B cells that appear to develop and evolve based on signals from the microenvironment. In vitro and in vivo evidence suggests that the B-cell antigen receptor (BCR) and Toll-like receptors (TLRs) may be keys to this stimulation. Because clonal turnover can lead to the release of naked nuclear material into the cellular microenvironment, these remnants of dying/dead cells may contribute to disease progression by repeated low level T-independent activation of CLL cells through the combination of the BCR and TLRs. To test this hypothesis, we assessed TLR9-driven or BCR + TLR9-driven CLL B-cell activation, focusing on its impact on telomerase activation in CLL cells, which is known to be important in the disease and which we have shown to be selectively activated by BCR stimulation in Ig V-unmutated (U-CLL) clones but not in Ig V-mutated (M-CLL) clones. B cells, isolated by negative selection from peripheral blood of IgM+ CLL patients and cryopreserved until use, were cultured for 16 hr without/ with TLR9 agonist, ODN 2006, alone and were assayed for apoptosis using Annexin V and flow cytometry. To study the relative contribution of simultaneous TLR9 activation and BCR activation, B cells were exposed to ODN2006 alone or HB57dex (monoclonal anti IgM Ab conjugated onto dextran) alone or a combination of the two reagents. Extracts from cells cultured for a period of 3 days were assayed for functional telomerase activity using TRAP. Parallel cultures of B cells exposed to the same stimuli were harvested at day 3 and assayed for cell activation and proliferation, which was assessed by 3H thymidine incorporation. CLL cells cultured with ODN2006 exhibited significant apoptosis within 16 hours in 6/12 cases. However at day 3, the same stimulus elicited significant increases in percentages of CD69-expressing cells and densities of HLA-DR in all CLL cases studied. As compared to BCR activation, which upregulates telomerase activity in U-CLL only, TLR9-mediated activation of CLL induced telomerase activation in all CLL cases. Furthermore, ODN2006 elicited significantly higher induction of telomerase activity in M-CLL cases compared to U-CLL cases (p=0.01). In addition, in M-CLL cases, simultaneous activation via TLR9 and BCR significantly upregulated the telomerase activity (p=0.05) that was induced by TLR9 activation alone. IRAK-1/4 inhibitor down modulated both TLR9 mediated and TLR9 +BCR mediated telomerase activity to a greater extent in M-CLL cases than in U-CLL cases. TLR9 activation of CLL cells induced a 3.75 + 0.8 fold (range 1.1 to 19.6; n=32) increase in cell proliferation. When segregated by Ig V mutation, U-CLL cells (n=16) responded significantly better (6.0 + 1.6 fold) compared to M-CLL cells (2.1 + 0.3 fold, n=16; p=0.03). However, co-stimulation of cells via their BCR significantly increased TLR-mediated responses only in M-CLL cases (from 2.3 + 0.4 fold to 5.4 + 1.7 fold; p=0.05). IRAK-1/4 inhibitor did not exert a significant effect on TLR9 mediated cell proliferation in either the U-CLL or M-CLL cases. Co-culture of CLL cells with human stromal cells, HS5, further upregulated the concerted TLR9 + BCR induced proliferative responses in 70% of the cases studied. Together, these results indicate that simultaneous stimulation of CLL cells via both their TLR9 and BCR molecules positively impacts on telomerase activity in all patients studied. Since telomerase is crucial in maintaining longevity of repeatedly stimulated cells, this could represent a mechanism for worse clinical outcome in CLL. These studies stress the need for devising therapeutic agents or combinations thereof to effectively target multiple pathways downstream of these signaling receptors and to ultimately eradicate newly evolving CLL cells. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22029-e22029
Author(s):  
A. Goldkorn ◽  
T. Xu

e22029 Background: We investigated whether telomerase, which is critical for benign stem cell activation, also plays a role in prostate cancer progenitor cells (PCPCs), which are thought to mediate therapy resistance and cancer progression, and we tested whether telomerase interference can effectively inhibit PCPC proliferation. Methods: A putative PCPC population was isolated from human prostatectomy specimens via collagen attachment and FACS selection for integrin α2β1 and CD44. PCPCs were characterized for gene expression (RT-PCR), clonogenicity (colony formation), invasiveness (matrigel chamber), and telomerase activity (qPCR-TRAP). PCPC telomerase interference was accomplished by lentiviral expression of 2 constructs: telomerase RNA with an altered template region (MT-Ter) and siRNA targeting wild-type telomerase RNA (anti-Ter siRNA). The effects of these constructs were assessed by measuring PCPC viability (MTS) and apoptosis (TUNEL assay). Results: An integrin α2β1+CD44+ putative PCPC population was isolated from 6 human prostate tumors. This population expressed high levels of “progenitor phenotype” genes (ABCG2, β-catenin, NANOG, Oct3/4) and low levels of “differentiated phenotype” genes (AR and PSA). PCPCs yielded >50 colonies per 1000 cells seeded on collagen after 3 weeks vs. none from FACS- cells, and matrigel chamber assay showed 10% of the PCPC population invading over 24 hours vs. none of the FACS- population. Most importantly, PCPCs possessed at least 20- fold greater telomerase activity than FACS- cells, and induction of telomerase interference in PCPCs via MT-hTer and anti- hTer siRNA expression elicited a brisk apoptotic response (TUNEL) by day 3 in >90% of cells, with concomitant near-complete growth inhibition (MTS). Conclusions: We have shown that human prostate tumors contain a subpopulation of prostate cancer progenitor cells (PCPCs) marked by an undifferentiated gene expression profile, vigorous clonogenicity and invasiveness, and high levels of telomerase activity that can be successfully exploited to neutralize these cells. Ongoing studies are investigating the in vivo effects of telomerase interference on PCPC tumorigenicity in mouse models. No significant financial relationships to disclose.


2000 ◽  
Vol 11 (10) ◽  
pp. 3329-3340 ◽  
Author(s):  
Tara L. Beattie ◽  
Wen Zhou ◽  
Murray O. Robinson ◽  
Lea Harrington

The minimal, active core of human telomerase is postulated to contain two components, the telomerase RNA hTER and the telomerase reverse transcriptase hTERT. The reconstitution of human telomerase activity in vitro has facilitated the identification of sequences within the telomerase RNA and the RT motifs of hTERT that are essential for telomerase activity. However, the precise role of residues outside the RT domain of hTERT is unknown. Here we have delineated several regions within hTERT that are important for telomerase catalysis, primer use, and interaction with the telomerase RNA and the telomerase-associated protein TEP1. In particular, certain deletions of the amino and carboxy terminus of hTERT that retained an interaction with telomerase RNA and TEP1 were nonetheless completely inactive in vitro and in vivo. Furthermore, hTERT truncations lacking the amino terminus that were competent to bind the telomerase RNA were severely compromised for the ability to elongate telomeric and nontelomeric primers. These results suggest that the interaction of telomerase RNA with hTERT can be functionally uncoupled from polymerization, and that there are regions outside the RT domain of hTERT that are critical for telomerase activity and primer use. These results establish that the human telomerase RT possesses unique polymerization determinants that distinguish it from other RTs.


Sign in / Sign up

Export Citation Format

Share Document