scholarly journals Immune Infiltration-Related Signature Predicts Risk Stratification and Immunotherapy Efficacy in Grade II and III Gliomas

Author(s):  
Cong Luo ◽  
Zhixiong Liu ◽  
Wenrui Ye ◽  
Fangkun Liu

Background: Tumor microenvironment, especially infiltrating immune cell, is crucial for solid tumors including glioma. However, the hub genes as well as their effects on patient prognosis and immunotherapy efficacy remain obscure.Methods: We employed a total of 952 lower grade glioma (LGG) patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases, and 24 samples in our hospital for subsequent analyses. Abundances of immune infiltrates were evaluated using CIBERSORT and ImmuCellAI. Their correlations with prognosis were assessed by log-rank test. Immune infiltration-related hub genes were obtained from overlapped differential expressed genes (DEGs) in various subsets of survival-related immune cell types. The risk signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis. The functional analyses were estimated by GVSA and Gene Set Enrichment Analysis (GSEA) algorithms. And protein–protein interaction enrichment analysis was carried out with the Metascape database integrating STRING, BioGrid, OmniPath, and InWeb_IM.Results: Among the 21 infiltrates, the abundances of five immune infiltrates were correlated with overall survival (OS) in LGG patients. Higher abundances of naïve CD4+ T cells (p = 0.002), activated mast cells (p = 0.015), and monocytes (p = 0.014) were correlated with better prognosis, while higher abundances of resting memory CD4+ T cells (p = 0.015) and M1 macrophages (p = 0.020) correlated with poorer OS. We finally obtained 44 hub genes and constructed an immune infiltration-related signature (IIRS). The IIRS correlates with clinicopathological characteristics and exhibited potential power in predicting the immunotherapy efficacy. The IRRS correlates with cancer related pathways, especially “epithelial-mesenchymal transition (EMT),” and cytotoxic T lymphocytes.Conclusion: Our study constructed and validated a novel signature for risk stratification and prediction of immunotherapy response in grade II and III gliomas, which was closely associated with glioma immune microenvironment and could serve as a promising prognostic biomarker for glioma patients.

2021 ◽  
Author(s):  
Sheng Fang ◽  
Xiao Fang ◽  
Xin Xu ◽  
Lin Zhong ◽  
An-quan Wang ◽  
...  

Abstract Relevance Rheumatoid arthritis (RA) is a systemic autoimmune disease with an aggressive, chronic synovial inflammation as the main pathological change. However, the specific etiology, pathogenesis, and related biomarkers in diagnosis and treatment are still not fully elucidated. This study attempts to provide new perspectives and insights into RA at the genetic, molecular, and cellular levels through the tenet of personalized medicine. Methods Gene expression profiles of four individual knee synovial tissues were downloaded from a comprehensive gene expression database, R language was used to screen for significantly differentially expressed genes (DEGs), Gene Ontology Enrichment Analysis, Kyoto Gene Encyclopedia, and Gene Set Enrichment Analysis were performed to analyze the biological functions and signaling pathways of these DEGs, STRING online database was used to establish protein-protein interaction networks, Cytoscape software to obtain ten hub genes, Goplot to get six inflammatory immune-related hub genes, and CIBERSORT algorithm to impute immune infiltration. Results Molecular pathways that play important roles in RA were obtained: Toll-like receptors, AMPK, MAPK, TNF, FoxO, TGF-beta, PI3K and NF-κB pathways, Ten hub genes: Ccr1, Ccr2, Ccr5, Ccr7, Cxcl5, Cxcl6, Cxcl13, Ccl13, Adcy2, and Pnoc. among which Adcy2 and Pnoc have not been reported in RA studies, suggesting that they may be worthy targets for further study. It was also found that among the synoviocytes in RA, the proportions of plasma cells, CD8 T cells, follicular helper T cells, monocytes, γ delta T cells, and M0 macrophages were higher, while the proportions of CD4 memory resting T cells, regulatory T cells (Tregs), activated NK cells, resting dendritic cells, M1 macrophages, eosinophils, activated mast cells, resting mast cells were lower in proportion, and each cell played an important role in RA. Conclusions This study may help understand the key genes, molecular pathways, the role of inflammatory immune infiltrating cells in RA’s pathogenesis and provide new targets and ideas for the diagnosis and personalized treatment of RA.


2021 ◽  
Author(s):  
beibei xu ◽  
Endian Zheng ◽  
Yi Huang ◽  
Liang Zheng ◽  
Qiaoli Lan ◽  
...  

Abstract BackgroundCircular RNA (circRNA) has been shown to be an important regulator in gastric cancer (GC). However, functions and regulatory mechanisms of circRNA-related competitive endogenous RNA (ceRNA) in GC have not been established.MethodsCircRNA data and clinical data were downloaded from the GEO and TCGA databases. The ceRNA and Protein-Protein Interaction (PPI) networks were constructed through bioinformatics analysis. Function enrichment analysis was performed. Additionally, correlations between expression levels of the top 10 hub genes and immune cell infiltration levels, histopathological grade and clinical stage were determined to establish their clinical values. The differentially expressed circRNA (DEcircRNA) was validated by quantitative real-time PCR (qRT-PCR).ResultsScreening of the GEO and TCGA databases revealed a total of 1627 DEcircRNAs, 6516 DEmRNAs, and 1451 DEmiRNAs. The ceRNA interaction network contained 2 circRNAs, 3 miRNAs and 55 mRNAs. Meanwhile, Gene Ontology (GO) analysis revealed a total of 323 biological processes (BP) terms, 53 cellular components (CC) terms, 51 molecular functions (MF) terms, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed 4 signaling pathways. Gene Set Enrichment Analysis (GSEA) analysis revealed that EPHA4, NCAM1 and NRXN1 were positively correlated with the axon guidan and adhesion molecules pathways. Most of top 10 hub genes were positively correlated with B cells, CD8+ T cells, CD4+ T cells, Neutrophils and Dendritic Cell infiltration. Correlation analysis between hub genes and clinical phenotypes revealed that elevated expressions of EPHA4 and KCNA1 indicated poor tissue differentiation and were associated with clinically advanced stages of GC. The qRT-PCR results revealed that the expression of has_circ_0002504 was significantly down-regulated in 3 GC cell lines which was consistent with the results of our bioinformatics analysis.ConclusionsHas_circ_0001998 and has_circ_0002504 are potential diagnostic biomarkers for GC, and the high expressions of both EPHA4 and KCNA1 may predict poor prognosis.


2021 ◽  
Author(s):  
Wei ZHOU ◽  
Yaoyu LIU ◽  
Qinghong HU ◽  
Jiuyao ZHOU ◽  
Hua LIN

Abstract BackgroundIncreasing evidence suggests that immune cell infiltration contributes to the pathogenesis and progression of diabetic nephropathy (DN). We aim to unveil the immune infiltration pattern in the glomerulus of DN and provide potential targets for immunotherapy. MethodsInfiltrating percentage of 22 types of immune cell in the glomerulus tissues were estimated by the CIBERSORT algorithm based on three transcriptome datasets mined from the GEO database. Differentially expressed genes (DEGs) were identified by the “limma” package. Then immune-related DEGs were identified by intersecting DEGs with immune-related genes (downloaded from Immport database). The protein-protein interactions of Immune-related DEGs were explored using the STRING database and visualized by Cytoscape. The enrichment analyses for KEGG pathways and GO terms were carried out by the gene set enrichment analysis (GSEA) method. Results9 types of immune cell were revealed to be significantly altered in the glomerulus tissues of DN (Up: B cells memory, T cells CD4 naive, Macrophages M2, Dendritic cells resting, Mast cells resting, Mast cells activated; Down: NK cells resting, Monocytes, Neutrophils). Correlation analysis revealed that immune infiltration act as a complicated and tightly regulated network, among which T cells gamma delta and T cells CD4 naive show the most synergistic effect (r = 0.58, p < 0.001); meanwhile, T cells CD8 and T cells CD4 memory resting show the most competitive effect (r = - 0.67, p < 0.001). Several pathways related to immune were significantly activated. Moreover, 6 hub genes with a medium to strong correlation with renal function (eGFR) were identified (ALB, EGF, FOS, CXCR1, CXCR2, CCL2). ConclusionIn the glomerulus of DN, the immune infiltration pattern changed significantly. A complicated and tightly regulated network of immune cells exists in the pathological of DN. The hub genes identified here will facilitate the development of immunotherapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Shen ◽  
Li-rong Xu ◽  
Xiao Tang ◽  
Chang-po Lin ◽  
Dong Yan ◽  
...  

Abstract Background Atherosclerosis is a chronic inflammatory disease that affects multiple arteries. Numerous studies have shown the inherent immune diversity in atheromatous plaques and suggest that the dysfunction of different immune cells plays an important role in atherosclerosis. However, few comprehensive bioinformatics analyses have investigated the potential coordinators that might orchestrate different immune cells to exacerbate atherosclerosis. Methods Immune infiltration of 69 atheromatous plaques from different arterial beds in GSE100927 were explored by single-sample-gene-set enrichment analysis (presented as ssGSEA scores), ESTIMATE algorithm (presented as immune scores) and CIBERSORT algorithm (presented as relative fractions of 22 types of immune cells) to divide these plaques into ImmuneScoreL cluster (of low immune infiltration) and ImmuneScoreH cluster (of high immune infiltration). Subsequently, comprehensive bioinformatics analyses including differentially-expressed-genes (DEGs) analysis, protein–protein interaction networks analysis, hub genes analysis, Gene-Ontology-terms and KEGG pathway enrichment analysis, gene set enrichment analysis, analysis of expression profiles of immune-related genes, correlation analysis between DEGs and hub genes and immune cells were conducted. GSE28829 was analysed to cross-validate the results in GSE100927. Results Immune-related pathways, including interferon-related pathways and PD-1 signalling, were highly enriched in the ImmuneScoreH cluster. HLA-related (except for HLA-DRB6) and immune checkpoint genes (IDO1, PDCD-1, CD274(PD-L1), CD47), RORC, IFNGR1, STAT1 and JAK2 were upregulated in the ImmuneScoreH cluster, whereas FTO, CRY1, RORB, and PER1 were downregulated. Atheromatous plaques in the ImmuneScoreH cluster had higher proportions of M0 macrophages and gamma delta T cells but lower proportions of plasma cells and monocytes (p < 0.05). CAPG, CECR1, IL18, IGSF6, FBP1, HLA-DPA1 and MMP7 were commonly related to these immune cells. In addition, the advanced-stage carotid plaques in GSE28829 exhibited higher immune infiltration than early-stage carotid plaques. Conclusions Atheromatous plaques with higher immune scores were likely at a more clinically advanced stage. The progression of atherosclerosis might be related to CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, FTO, CRY1, RORB, RORC, PER1, HLA-DPA1 and immune-related pathways (IFN-γ pathway and PD-1 signalling pathway). These genes and pathways might play important roles in regulating immune cells such as M0 macrophages, gamma delta T cells, plasma cells and monocytes and might serve as potential therapeutic targets for atherosclerosis.


2021 ◽  
Author(s):  
Wen Gao ◽  
Sheng Yin ◽  
Haiyan Sun ◽  
Zhuyan Shao ◽  
Peipei Shi ◽  
...  

Abstract Background: Secreted phosphoprotein 1 (SPP1) plays a vital role in tumor progression of some cancer types, but little is known whether it is a bystander or an actual player on driving immune infiltration in ovarian cancer.Methods: In this study, the expression of SPP1 was identified by Oncomine, GEPIA and TIMER databases, and SPP1 immumohistochemical staining analysis was assessed by The HPA database. The clinical outcomes between SPP1 expression and ovarian cancer patients were evaluated via Kaplan-Meier Plotter and PrognoScan dataset. Immune infiltration analyses were explored using TIMER and TISIDB dataset. In addition, Functional enrichment analyses were performed with Metascape and GeneMANIA database.Results: SPP1 was found overexpressed in ovarian tumor tissues and high SPP1 expression was correlated with shorter OS and PFS survivals. Particularly, elevated SPP1 expression was significantly associated with stage III ovarian cancer. Notably, SPP1 expression was positively correlated with infiltrating levels of CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells. Furthermore, SPP1 expression showed strong correlations with diverse immune hallmark sets in ovarian cancer. Of particular importance, functional enrichment analysis suggested that SPP1 strong related with immune response.Conclusions: These findings imply that SPP1 is correlated with prognosis and immune cell infiltrating, offering a new potential immunotherapeutic target in ovarian cancer.Trial registration: Not applicable.


2020 ◽  
Vol 10 ◽  
Author(s):  
Wen-Xiu Xu ◽  
Jian Zhang ◽  
Yu-Ting Hua ◽  
Su-Jin Yang ◽  
Dan-Dan Wang ◽  
...  

BackgroundLipocalin 2 (LCN2), an innate immune protein, plays a pivotal role in promoting sterile inflammation by regulating immune responses. However, the role of LCN2 in diverse cancers remains poorly defined. This research aimed to investigate the correlation between LCN2 expression and immunity and visualize its prognostic landscape in pan-cancer.MethodsRaw data in regard to LCN2 expression in cancer patients were acquired from TCGA and GTEx databases. Besides, we investigated the genomic alterations, expression pattern, and survival analysis of LCN2 in pan-cancer across numerous databases, including cBioPortal and GEPIA database. The correlation between LCN2 expression and tumor immune infiltration was explored via TIMER, and we utilized CIBERSORT and ESTIMATE computational methods to assess the proportion of tumor-infiltrating immune cells (TIICs) and the amount of stromal and immune components from TCGA database. Protein–Protein Interaction analysis was performed in GeneMANIA database, and gene functional enrichment was performed by Gene Set Enrichment Analysis (GSEA).ResultsOn balance, tumor tissue had a higher LCN2 expression level compared with that in normal tissue. Elevated expression of LCN2 was related to poor clinical regimen with OS and RFS. There were significant positive correlations between LCN2 expression and TIICs, including CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells. Moreover, markers of TIICs exhibited different LCN2-related immune infiltration patterns. GSEA analysis showed that the expression of LCN2 was related to retinol metabolism, drug metabolism cytochrome P450 and metabolism of xenobiotics by cytochrome P450.ConclusionsThese findings suggested that LCN2 might serve as a biomarker for immune infiltration and poor prognosis in cancers, shedding new light on therapeutics of cancers.


2020 ◽  
Author(s):  
Zhenyu Xie ◽  
Xin Li ◽  
Yuzhen He ◽  
Song Wu ◽  
Shiyue Wang ◽  
...  

Abstract Background Papillary thyroid carcinoma (PTC) is classified as an inflammation-driven cancer. A systematic understanding of immune cell infiltration in PTC is essential for subsequent immune research and new diagnostic and therapeutic strategies. Methods Three different algorithms, single-sample gene set enrichment analysis (ssGSEA), immune cell marker and CIBERSORT, were used to evaluate the immune cell infiltration levels (abundance and proportion) in 10 data sets (The Cancer Genome Atlas [TCGA], GSE3467, GSE3678, GSE5364, GSE27155, GSE33630, GSE50901, GSE53157, GSE58545, and GSE60542; a total of 799 PTC and 194 normal thyroid samples). Consensus unsupervised clustering divided PTC patients into low-immunity and high-immunity groups. Weighted gene coexpression network analysis (WGCNA) and gene set enrichment analysis (GSEA) were used to analyze the potential mechanisms that cause differences in the immune response. Results Compared with normal tissues, PTC tissues had a higher overall immune level, and the M2 macrophages, Tregs, monocytes, neutrophils, dendritic cells (DCs), mast cells (MCs), and M0 macrophages had higher abundances and proportions in PTC tissues. Compared with early PTC, advanced PTC had higher immune infiltration, and M2 macrophages, Tregs, monocytes, neutrophils, DCs, MCs, and M0 macrophages had higher abundances and proportions in advanced PTC. Compared to the low-immunity group patients, the high-immunity group patients presented with a more advanced stage, a larger tumor size, greater lymph node metastasis, higher tall-cell PTC, lower follicular PTC proportions, more BRAF mutations and fewer RAS mutations. Epstein-Barr virus (EBV) infection was the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for key module genes. Conclusions In human PTC, M2 macrophages, Tregs, monocytes, neutrophils, DCs, MCs, and M0 macrophages played a tumor-promoting role, while M1 macrophages, CD8 + T cells, B cells, NK cells, and T follicular helper (TFH) cells (including eosinophils, γδ T cells, and Th17 cells, with weak supporting evidence) played an antitumor role. During the occurrence and development of PTC, the overall immune level was increased, and the abundance and proportion of tumor-promoting immune cells were significantly increased, indicating that immune escape had aggravated. Finally, we speculate that EBV may play an important role in changing the immune microenvironment of PTC tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yumei Fan ◽  
Bing Liu ◽  
Fei Chen ◽  
Zhiyuan Song ◽  
Bihui Han ◽  
...  

Lung cancer has the highest death rate among cancers globally. Hepcidin is a fascinating regulator of iron metabolism; however, the prognostic value of hepcidin and its correlation with immune cell infiltration in lung cancer remain unclear. Here, we comprehensively clarified the prognostic value and potential function of hepcidin in lung cancer. Hepcidin expression was significantly increased in lung cancer. High hepcidin expression was associated with sex, age, metastasis, and pathological stage and significantly predicted an unfavorable prognosis in lung cancer patients. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) results suggested that hepcidin is involved in the immune response. Furthermore, hepcidin expression was positively correlated with the infiltration levels of immune cells and the expression of diverse immune cell marker sets. Importantly, hepcidin may affect prognosis partially by regulating immune infiltration in lung cancer patients. Hepcidin may serve as a candidate prognostic biomarker for determining prognosis associated with immune infiltration in lung cancer.


2021 ◽  
Author(s):  
Xiaofeng Wang ◽  
Kun Zhang ◽  
Li Geng ◽  
DongLi Liu

Abstract Background: Secreted phosphoprotein 1 (SPP1) functions as a tumor promoter in varies tumors, but little is known whether it is an actual player on driving immune infiltration in hepatocellular carcinoma. Methods: In this study, we identified the expression of SPP1 by Oncomine, GEPIA and TIMER databases, and assessed SPP1 immumohistochemical staining analysis by The HPA database. We evaluated the clinical outcomes between SPP1 expression and hepatocellular carcinoma patients via Kaplan-Meier Plotter. We also tested the relationship between SPP1 and critical oncogenes by TIMER and GEPIA databases. Then we explored immune infiltration analyses using TIMER and TISIDB datasets. In addition, we performed functional enrichment analyses with Metascape and GeneMANIA databases. Results: We found that SPP1 overexpressed in hepatocellular carcinoma tissues and high SPP1 expression was correlated with shorter OS and PFS survivals in hepatocellular carcinoma patients. SPP1 expression is positive correlation with critical oncogenes related stemness associated genes, cell cycle and proliferation, therapeutic resistance, metastasis, and tumor angiogenesis in hepatocellular carcinoma. Importantly, SPP1 expression was positively correlated with infiltrating levels of CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells. Furthermore, SPP1 expression showed strong correlations with diverse immune hallmark sets in hepatocellular carcinoma. Notably, functional enrichment analysis suggested that SPP1 strong related with immune response. Conclusions: These findings imply that SPP1 is correlated with prognosis and immune cell infiltrating, offering a new potential immunotherapeutic target in hepatocellular carcinoma.


2021 ◽  
Author(s):  
Ninghua Yao ◽  
Wei Jiang ◽  
Jie Sun ◽  
Chen Yang ◽  
Wenjie Zheng ◽  
...  

Abstract Background Epigenetic reprogramming plays an important role in the occurrence, development, and prognosis of hepatocellular carcinoma (HCC). DNA methylation is a key epigenetic regulatory mechanism, and DNA methyltransferase 1 (DNMT1) is the major enzyme responsible for maintenance methylation. Nevertheless, the role and mechanism of DNMT1 in HCC remains poorly defined. Methods In the current study, we conducted pan-cancer analysis for DNMT1’s expression and prognosis using The Cancer Genome Atlas (TCGA) data set. We conducted gene Set Enrichment Analysis (GSEA) between high-and-low DNMT1 expression groups to identify DNMT1-related functional significance. We also investigated the relationship between DNMT1 expression and tumor immune microenvironment, including immune cell infiltration and the expression of immune checkpoints. Through a combination series of computer analyses (including expression analyses, correlation analyses, and survival analyses), the noncoding RNAs (ncRNAs) that contribute to the overexpression of DNMT1 were ultimately identified. Results We found that DNMT1 was upregulated in 16 types of human carcinoma including HCC, and DNMT1 might be a biomarker predicting unfavorable prognosis in HCC patients. DNMT1 mRNA expression was statistically associated with age, histological grade, and the level of serum AFP. Moreover, DNMT1 level was significantly and positively linked to tumor immune cell infiltration, immune cell biomarkers, and immune checkpoint expression. Meanwhile, Gene Set Enrichment Analysis (GSEA) revealed that high-DNMT1 expression was associated with epithelial mesenchymal transition (EMT), E2F target, G2M checkpoint, and inflammatory response. Finally, through a combination series of computer analyses the SNHG3/hsa-miR-148a-3p/DNMT1 axis was confirmed as the potential regulatory pathway in HCC. Conclusion SNHG3/miR-148a-3p axis upregulation of DNMT1 may be related to poor outcome, tumor immune infiltration, and regulated malignant properties in HCC.


Sign in / Sign up

Export Citation Format

Share Document