scholarly journals Humanized CD30-Targeted Chimeric Antigen Receptor T Cells Exhibit Potent Preclinical Activity Against Hodgkin’s Lymphoma Cells

Author(s):  
Jing Guo ◽  
Shuai He ◽  
Yongjie Zhu ◽  
Wei Yu ◽  
Dong Yang ◽  
...  

CD30-directed chimeric antigen receptors (CARs) with single chain antibody fragment (scFv)-binding domains from murine HRS3 show strong cytotoxicity to Hodgkin’s Lymphoma cells and have been used in clinical trials. However, murine scFv in CAR might induce specific rejective immune responses in patients, which compromises the therapeutic effects. The use of human or humanized antibody fragments for CAR construction, rather than those derived from mouse antibodies, can reduce the immunogenicity of the CAR. Importantly, this strategy might simultaneously decrease the risk of cytokine-mediated toxicities and improve CAR T cell persistence. Murine HRS3 antibody has been successfully humanized by grafting the complementarity-determining regions (CDRs) from the mouse antibody framework onto human immunoglobulin consensus sequences, followed by an in vitro evolutionary strategy to select functional Fab fragments with the same affinity as murine sources. In this study, humanized scFvs were utilized to construct a CD30-directed CAR (hHRS3-CAR), and its effectiveness was compared with that of HRS3-CAR. The hHRS3-CAR-T cells specifically kill CD30-positive tumor cell lines in vitro and eliminate lymphoma xenografts in immunodeficient mice with comparable efficiency to HRS3-CAR. The hHRS-CAR-T could be used in clinical trials based on the previously reported advantages of humanized CARs, such as the reduction of immune rejection and better persistence of cells.

2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Jiang ◽  
Tao Li ◽  
Jiaojiao Guo ◽  
Jingjing Wang ◽  
Lizhou Jia ◽  
...  

T cells expressing chimeric antigen receptors, especially CD19 CAR-T cells have exhibited effective antitumor activities in B cell malignancies, but due to several factors such as antigen escape effects and tumor microenvironment, their curative potential in hepatocellular carcinoma has not been encouraging. To reduce the antigen escape risk of hepatocellular carcinoma, this study was to design and construct a bispecific CAR targeting c-Met and PD-L1. c-Met/PD-L1 CAR-T cells were obtained by lentiviral transfection, and the transfection efficiency was monitored by flow cytometry analysis. LDH release assays were used to elucidate the efficacy of c-Met/PD-L1 CAR-T cells on hepatocellular carcinoma cells. In addition, xenograft models bearing human hepatocellular carcinoma were constructed to detect the antitumor effect of c-Met/PD-L1 CAR-T cells in vivo. The results shown that this bispecific CAR was manufactured successfully, T cells modified with this bispecific CAR demonstrated improved antitumor activities against c-Met and PD-L1 positive hepatocellular carcinoma cells when compared with those of monovalent c-Met CAR-T cells or PD-L1 CAR-T cells but shown no distinct cytotoxicity on hepatocytes in vitro. In vivo experiments shown that c-Met/PD-L1 CAR-T cells significantly inhibited tumor growth and improve survival persistence compared with other groups. These results suggested that the design of single-chain, bi-specific c-Met/PD-L1 CAR-T is more effective than that of monovalent c-Met CAR-T for the treatment of hepatocellular carcinoma., and this bi-specific c-Met/PD-L1 CAR is rational and implementable with current T-cell engineering technology.


Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 262-267 ◽  
Author(s):  
R Stauder ◽  
S Hamader ◽  
B Fasching ◽  
G Kemmler ◽  
J Thaler ◽  
...  

The interaction of human lymphoma cells with high endothelial venules (HEVs) on sections of lymphatic tissues was studied in 44 cases of non- Hodgkin's lymphoma (NHL) with the in vitro HEV binding assay. The relative adherence ratio (RAR) of lymphoma cells to HEVs as related to that of reactive lymphocytes was 0.29 to 4.64 in 38 cases of B chronic lymphocytic leukemia (CLL), 1.15 and 1.54 in two cases of immunocytic NHL, 1.12 and 0.70 in two cases of centrocytic NHL, 1.98 in one case of a peripheral T-NHL, whereas plasma cell leukemia cells adhered very weakly (RAR 0.1). Among the patients suffering from CLL a pronounced HEV binding ability of tumor cells correlated significantly with the more unfavorable Binet stages B and C (median 1.32) as well as with a widespread lymphatic dissemination, which strongly indicates a hematogenous, HEV-mediated spread (median 1.34). In contrast, weak adherence to HEVs was associated with Binet stage A (median 0.85; P < .05) and with a lacking or only localized clinical involvement of lymph nodes (median 0.84; P < .01). Thus, specific HEV recognition processes even operate in lymphoid neoplasms and via this mechanism seem to influence the dissemination of tumors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3277-3277
Author(s):  
Keichiro Mihara ◽  
Kazuyoshi Yanagihara ◽  
Chihaya Imai ◽  
Akiro Kimura ◽  
Dario Campana

Abstract Less than 60% of patients with B-cell non-Hodgkin’s lymphoma (B-NHL) can be cured with contemporary therapy. Using artificial receptors it is possible to redirect the specificity of immune cells to tumor-associated antigens, a strategy that holds great potential as a novel cancer therapy. Since B-NHL cells invariably express CD19, we transduced human peripheral blood T lymphocytes with a recently developed receptor (anti-CD19-BB-ζ), which consists of the single-chain variable domain (scFv) of an anti-CD19 monoclonal antibody, the hinge and transmembrane domains of CD8α, and the signaling domains of CD3ζ and 4-1BB. CD3ζ delivers the primary stimulus upon receptor engagement, while 4-1BB delivers co-stimulatory signals that are crucial for T-cell cytotoxicity. It has been shown that elicitation of 4-1BB signaling enhances the immune response to tumors in vivo, even when an immune response cannot be induced by CD28 stimulation. Retroviral transduction led to anti-CD19-BB-ζ expression in T cells with high efficiency: median percent of transduced cells was 60.3% (range, 25.7%–83.4%; n = 9). T lymphocytes expressing anti-CD19-BB-ζ expanded more vigorously that T cells transduced with receptors lacking 4-1BB and exerted powerful cytotoxicity against the CD19+ B-NHL cell lines Raji, Daudi, RL, and HT in vitro: at a 0.5: 1 effector: target ratio, mean (± SD) cell specific lymphoma cell killing was 96.6% ± 4.6% after 5–7 days of culture (4 experiments in each cell line). Transduced T cells were also effective against freshly isolated cells from patients with diffuse large, follicular large, Burkitt, and mantle cell lymphoma cultured on bone marrow-derived mesenchymal cells: in 10 samples, cell killing was 93.6% ± 5.7% at a 0.5: 1 ratio after 5–7 days of culture. Sensitivity to anti-CD19-BB-ζ-mediated killing was observed regardless of high Bcl-2 expression. T cells expressing anti-CD19-BB-ζ were also effective in a xenograft model of NHL, in which NOD/SCID mice were inoculated subcutaneously with lymphoma cells (1 x 107). Subsequent inoculation of T cells (2 x 106) transduced with anti-CD19-BB-ζ receptors significantly suppressed tumor growth, whereas inoculation of T cells transduced with empty control vector had no effect (3 mice for each treatment). These results provide a rationale for clinical testing of autologous T cells modified with anti-CD19-BB-ζ receptors in patients with aggressive or relapsed B-NHLs refractory to conventional therapy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 346-346 ◽  
Author(s):  
Puja Sapra ◽  
Chien-Hsing Chang ◽  
Sailaja Vanama ◽  
Sharon Singh ◽  
Hans J. Hansen ◽  
...  

Abstract Rap, an amphibian ribonuclease, is a single-chain protein of 104 amino acids that kills cells by degrading t-RNA upon internalization. CD74 is a rapidly internalizing type-II transmembrane chaperone molecule associated with HLA-DR, and has high expression on hematological malignancies including B-cell non-Hodgkin’s lymphoma (NHL) and multiple myeloma (MM). We have constructed and evaluated two novel immunotoxins, 2L-Rap-hLL1-γ 4P and 2L-Rap(N69Q)-hLL1-γ 4P, each composed of two Rap molecules fused to hLL1, an internalizing anti-CD74 humanized monoclonal antibody. The Rap gene was inserted at the N-terminus of the light chain in the expression vector of hLL1 and expressed in NS0 mouse myeloma cells. To reduce unwanted cytotoxicity, the CH1, CH2, CH3 and the hinge regions of the γ 1 chain of hLL1 were replaced with those of γ 4. Additionally, the serine residue in the hinge region was converted to proline to prevent the formation of IgG4 half-molecules. Noting that Rap contains a potential N-glycosylation site at the 69th residue of asparagine(N69), a variant of Rap, referred to as Rap(N69Q), was constructed by changing N to Q (glutamine) and this variant was used to make 2L-Rap(N69Q)-hLL1-γ 4P. Purified recombinant immunotoxins were shown to be a single peak by SE-HPLC and their MW determined by MALDI-TOF to be 177,150, which is in agreement with the MW of one IgG (150,000) plus two Rap molecules (24,000). In vitro, both immunotoxins retained RNase activity, specific binding to CD74, and were significantly more potent against CD74-positive NHL and MM cell lines (Daudi, Raji and MC/CAR) than naked hLL1 or non-specific control immunotoxin, 2L-Rap(N69Q)-hRS7(immunotoxin against EGP-1). In Raji and Daudi Burkitt’s lymphoma xenograft models, treatment with a single 5- to 50-μg dose of 2L-Rap-hLL1-γ 4P, given as early or delayed treatment, resulted in cures of most animals. Additionally, treatment with a single 15-μg dose of 2L-Rap(N69Q)-hLL1-γ 4P 1-day post injection of cells resulted in 100% cures. Treatment with 2L-Rap-hLL1-γ 4P or 2L-Rap(N69Q)-hLL1-γ 4P was significantly better than all controls, including saline, naked hLL1 and non-specific immunotoxin. The maximum tolerated dose of 2L-Rap-hLL1-γ 4P or 2L-Rap(N69Q)-hLL1-γ 4P in SCID or BALB/c mice was 50 μg/mouse and the dose-limiting toxicity was hepatic. In our preliminary studies, we have observed that treating animals with NSAID’s, such as indomethacin, can ameliorate the hepatoxicity of 2L-Rap-hLL1-γ 4P. All animals that were injected with 100 μg/mouse 2L-Rap-hLL1-γ 4P alone died with a median survival time of 7 days; however, animals treated with 1.25mg/kg indomethacin prior and post-treatment of 2L-Rap-hLL1-γ 4P survived the duration of study (day 40). Experiments to determine the possible causes of liver toxicity produced by 2L-Rap-hLL1-γ 4P and to determine the MTD of Rap-immunotoxins in mice after treatment with indomethacin are ongoing. In conclusion, we have constructed two CD74-targeted novel recombinant immunotoxins containing Rap molecules that have demonstrated curative therapeutic effects in animal models of human B-cell lymphoma, and thus could be potential therapeutics for CD74-postive lymphomas and myelomas.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Saiedeh Razi Soofiyani ◽  
Kamran Hosseini ◽  
Haleh Forouhandeh ◽  
Tohid Ghasemnejad ◽  
Vahideh Tarhriz ◽  
...  

Lymphoma is a name for malignant diseases of the lymphatic system including Hodgkin’s lymphoma and non-Hodgkin’s lymphoma. Although several approaches are used for the treatment of these diseases, some of them are not successful and have serious adverse effects. Therefore, other effective treatment methods might be interesting. Studies have indicated that plant ingredients play a key role in treating several diseases. Some plants have already shown a potential therapeutic effect on many malignant diseases. Quercetin is a flavonoid found in different plants and could be useful in the treatment of different malignant diseases. Quercetin has its antimalignant effects through targeting main survival pathways activated in tumor cells. In vitro/in vivo experimental studies have demonstrated that quercetin possesses a cytotoxic effect on lymphoid cancer cells. Regardless of the optimum results that have been obtained from both in vitro/in vivo studies, few clinical studies have analyzed the antitumor effects of quercetin in lymphoid cancers. Thus, it seems that more clinical studies should introduce quercetin as a therapeutic, alone or in combination with other chemotherapy agents. Here, in this study, we reviewed the anticancer effects of quercetin and highlighted the potential therapeutic effects of quercetin in various types of lymphoma.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5614-5614
Author(s):  
Frederick Fasslrinner ◽  
Claudia Arndt ◽  
Anja Feldmann ◽  
Stefanie Koristka ◽  
Liliana Raquel Loureiro ◽  
...  

Clinical translation of chimeric antigen receptor (CAR) T cell therapy in myeloid malignancies is progressing slowly compared to its success in treatment of B cell malignancies. Clinical experiences with CAR T cell therapies against the currently investigated tumor-associated antigens (TAA) (e.g. CD33, CD123 and FMS-like tyrosine kinase 3 (FLT3)) were discouraging and severe side effects occurred (cytokine release syndrome, neurotoxicity and myeloid aplasia) (Hoffmann et al. Journal of Clinical Medicine 2019). Probably targeting a single TAA is insufficient to treat high risk myeloid malignancies with CAR T cell therapies. Therefore, combined targeting of two or even more TAAs seems to be a promising approach. In order to implement such a multiple tumor targeting strategy, we developed a modular CAR T cell system termed UniCAR. The system consists of a universal CAR (UniCAR) directed against the La peptide epitope E5B9 combined with single-chain variable fragment (scFv) -based target modules (TM). In contrast to conventional CARs, anti-tumor activity of UniCAR T cells is only turned on in the presence of the TMs. Thus, this approach will allow UniCAR T cell control due to the short half-life of the TM and therefore has a favorable safety profile. Furthermore, different TMs against several TAAs can be administered both sequentially or in parallel to increase the anti-tumor efficacy or face disease relapse due to antigen escape mechanisms. In the field of myeloid malignancies our group developed retargeting strategies against the TAAs CD33 and CD123 (Cartellieri et al. Blood Cancer Journal 2016). In addition, we have developed a new TM for the UniCAR system that is directed against the TAA FLT3. FLT3 is highly expressed on acute myeloid leukemia (AML) cells and also present on CD123low AML samples (Riccioni et al. British Journal of Haematology 2011). The novel FLT3 TM was constructed by fusion of the variable domain of the heavy and the light chain of the murine anti-FLT3 monoclonal antibody (4G8) to the E5B9 UniCAR epitope. In light of a potential clinical application, we in parallel generated a humanized FLT3 TM to further decrease its immunogenicity. Both FLT3 TMs were tested in vitro against different AML cell lines, by using flow cytometry based killing assays as described elsewhere (Fasslrinner et al. British Journal of Haematology 2019). The functionality of the FLT3 TMs in vitro was highly effective. Both FLT3 TMs were able to redirect UniCAR T cells for AML cell lysis already in the picomolar range and were moreover comparable effective than the previously developed CD123 TM. Thus, humanization of the FLT3 TM did not lead to a decrease in anti-tumor efficacy. In summary, we could show that both the novel murine FLT3 TM and the humanized counterpart redirected UniCAR T cells and induced highly effective elimination of AML cells in vitro. Thus, the flexible application of the FLT3-based UniCAR system seems to be a promising tool for cell-based AML therapy alone or even in combination with other AML-specific TMs (e.g. CD33, CD123). Disclosures Koristka: Intellia Therapeutics: Employment. Jung:Synimmune: Other: shareholder interest. Bachmann:GEMoaB Monoclonals: Equity Ownership, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document