scholarly journals Immune Landscape Refines the Classification of Colorectal Cancer With Heterogeneous Prognosis, Tumor Microenvironment and Distinct Sensitivity to Frontline Therapies

Author(s):  
Zaoqu Liu ◽  
Yaxin Guo ◽  
Xiuxiu Yang ◽  
Chen Chen ◽  
Dandan Fan ◽  
...  

The immune microenvironment has profound impacts on the initiation and progression of colorectal cancer (CRC). Therefore, the goal of this article is to identify two robust immune subtypes in CRC, further provide novel insights for the underlying mechanisms and clinical management. In this study, two CRC immune subtypes were identified using the consensus clustering of immune-related gene expression profiles in the meta-GEO dataset (n = 1,198), and their reproducibility was further verified in the TCGA-CRC dataset (n = 638). Subsequently, we characterized the immune escape mechanisms, gene alterations, and clinical features of two immune subtypes. Cluster 1 (C1) was defined as the “immune cold subtype” with immune cell depletion and deficiency, while cluster 2 (C2) was designed as the “immune hot subtype”, with abundant immune cell infiltration and matrix activation. We also underlined the potential immune escape mechanisms: lack of MHC molecules and defective tumor antigen presentation capacity in C1, increased immunosuppressive molecules in C2. The prognosis and sensitivity to 5-FU, Cisplatin and immunotherapy differed between two subtypes. According to the two immune subtypes, we developed a prognosis associated risk score (PARS) with the accurate performance for predicting the prognosis. Additionally, two nomograms for overall survival (OS) and disease-free survival (DFS) were further constructed to facilitate clinical management. Overall, our research provides new references and insights for understanding and refining the CRC.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Peiling Xie ◽  
Rui An ◽  
Shibo Yu ◽  
Jianjun He ◽  
Huimin Zhang

Abstract Background The diversity and plasticity behind ER+/PR−/HER2− breast cancer have not been widely explored. It is essential to identify heterogeneous microenvironment phenotypes and investigate specific genomic events driving the formation of these phenotypes. Methods Based on the immune-related gene expression profiles of 411 ER+/PR−/HER2− breast cancers in the METABRIC cohort, we used consensus clustering to identify heterogeneous immune subtypes and assessed their reproducibility in an independent meta-cohort including 135 patients collected from GEO database. We further analyzed the differences of cellular and molecular characteristics, and potential immune escape mechanism among immune subtypes. In addition, we constructed a transcriptional trajectory to visualize the distribution of individual patient. Results Our analysis identified and validated five reproducible immune subtypes with distinct cellular and molecular characteristics, potential immune escape mechanisms, genomic drivers, as well as clinical outcomes. An immune-cold subtype, with the least amount of lymphocyte infiltration, had a poorer prognosis. By contrast, an immune-hot subtype, which demonstrated the highest infiltration of CD8+ T cells, DCs and NK cells, and elevated IFN-γ response, had a comparatively favorable prognosis. Other subtypes showed more diverse gene expression and immune infiltration patterns with distinct clinical outcomes. Finally, our analysis revealed a complex immune landscape consisting of both discrete cluster and continuous spectrum. Conclusion Overall, this study revealed five heterogeneous immune subtypes among ER+/PR–/HER2− breast cancer, also provided important implications for clinical translations.


2020 ◽  
Author(s):  
Yi-feng Zou ◽  
Qiu-ning Wu ◽  
Si Qin ◽  
Xi Xi Chen ◽  
Jia-wei Cai ◽  
...  

Abstract Background and aimsA certain number of early-stage colorectal cancer (CRC) patients suffer tumor recurrence after initial curative resection. In this context, an effective prognostic biomarker model is constantly in need. Autophagy exhibits a dual role in tumorigenesis. Our study aims to develop an autophagy-related gene (ATG) signature based on high-throughput data analysis for disease-free survival (DFS) prognosis of patients with stage I/II CRC.MethodsGene expression profiles and clinical information of CRC patients extracted from four public datasets were divided into training cohort (GSE39582, n=566), validation cohort (TCGA CRC, n=624), and meta-validation cohort (GSE37892 and GSE14333, n=420). Autophagy genes significantly associated with prognosis were identified.ResultsAmong 655 autophagy-related genes, a 10 gene ATG signature, which was significantly associated with DFS in the training cohort (HR, 2.76[1.56–4.82]; P=2.06×10-4), was constructed. The ATG signature, stratifying patients into high and low autophagy risk groups, was validated in the validation (HR, 2.29[1.15–4.55]; P=1.5×10-2) and the meta-validation cohorts (HR, 2.5[1.03–6.06]; P=3.63×10-2), and proved to be prognostic in a multivariate analysis. Functional analysis revealed enrichment of several immune/ inflammatory processes in the high autophagy risk group, where significantly higher infiltration of T regulatory cells (Tregs) was observed.ConclusionsOur study established a prognostic ATG signature that effectively predicted DFS for early-stage CRC patients. Meanwhile, the study also revealed the possible correlation between autophagy and immune/ inflammatory processes and tumorigenesis.


2021 ◽  
Vol 22 (21) ◽  
pp. 11472
Author(s):  
Clémentine Dillard ◽  
Chloé Borde ◽  
Ammara Mohammad ◽  
Virginie Puchois ◽  
Laurent Jourdren ◽  
...  

The purine nucleotide adenosine triphosphate (ATP) is known for its fundamental role in cellular bioenergetics. However, in the last decades, different works have described emerging functions for ATP, such as that of a danger signaling molecule acting in the extracellular space on both tumor and stromal compartments. Beside its role in immune cell signaling, several studies have shown that high concentrations of extracellular ATP can directly or indirectly act on cancer cells. Accordingly, it has been reported that purinergic receptors are widely expressed in tumor cells. However, their expression pattern is often associated with contradictory cellular outcomes. In this work, we first investigated gene expression profiles through “RNA-Sequencing” (RNA Seq) technology in four colorectal cancer (CRC) cell lines (HT29, LS513, LS174T, HCT116). Our results demonstrate that CRC cells mostly express the A2B, P2X4, P2Y1, P2Y2 and P2Y11 purinergic receptors. Among these, the P2Y1 and P2Y2 coding genes are markedly overexpressed in all CRC cells compared to the HCEC-1CT normal-like colonic cells. We then explored the cellular outcomes induced by extracellular ATP and adenosine. Our results show that in terms of cell death induction extracellular ATP is consistently more active than adenosine against CRC, while neither compound affected normal-like colonic cell survival. Intriguingly, while for the P2Y2 receptor pharmacological inhibition completely abolished the rise in cytoplasmic Ca2+ observed after ATP exposure in all CRC cell lines, Ca2+ mobilization only impacted the cellular outcome for HT29. In contrast, non-selective phosphodiesterase inhibition completely abolished the effects of extracellular ATP on CRC cells, suggesting that cAMP and/or cGMP levels might determine cellular outcome. Altogether, our study provides novel insights into the characterization of purinergic signaling in CRC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu-tao Lin ◽  
Qiu-ning Wu ◽  
Si Qin ◽  
De-jun Fan ◽  
Min-yi Lv ◽  
...  

Purpose: A certain number of early-stage colorectal cancer (CRC) patients suffer tumor recurrence after initial curative resection. In this context, an effective prognostic biomarker model is constantly in need. Autophagy exhibits a dual role in tumorigenesis. Our study aims to develop an autophagy-related gene (ATG) signature-based on high-throughput data analysis for disease-free survival (DFS) prognosis of patients with stage I/II CRC.Methods: Gene expression profiles and clinical information of CRC patients extracted from four public datasets were distributed to discovery and training cohort (GSE39582), validation cohort (TCGA CRC, n = 624), and meta-validation cohort (GSE37892 and GSE14333, n = 420). Autophagy genes significantly associated with prognosis were identified.Results: Among 655 autophagy-related genes, a 10-gene ATG signature, which was significantly associated with DFS in the training cohort (HR, 2.76[1.56–4.82]; p = 2.06 × 10–4), was constructed. The ATG signature, stratifying patients into high and low autophagy risk groups, was validated in the validation (HR, 2.29[1.15–4.55]; p = 1.5 × 10–2) and meta-validation cohorts (HR, 2.5[1.03–6.06]; p = 3.63 × 10–2) and proved to be prognostic in a multivariate analysis. Functional analysis revealed enrichment of several immune/inflammatory pathways in the high autophagy risk group, where increased infiltration of T regulatory cells (Tregs) and decreased infiltration of M1 macrophages were observed.Conclusion: Our study established a prognostic ATG signature that effectively predicted DFS for early-stage CRC patients. Meanwhile, the study also revealed the possible relationship among autophagy process, immune/inflammatory response, and tumorigenesis.


2009 ◽  
Vol 8 (4) ◽  
pp. 207-214 ◽  
Author(s):  
An-Ting T. Lu ◽  
Shelley R. Salpeter ◽  
Anthony E. Reeve ◽  
Steven Eschrich ◽  
Patrick G. Johnston ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Binghao Zhao ◽  
Yuekun Wang ◽  
Yaning Wang ◽  
Congxin Dai ◽  
Yu Wang ◽  
...  

The immunosuppressive mechanisms of the surrounding microenvironment and distinct immunogenomic features in glioblastoma (GBM) have not been elucidated to date. To fill this gap, useful data were extracted from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GSE16011, GSE43378, GSE23806, and GSE12907. With the ssGSEA method and the ESTIMATE and CIBERSORT algorithms, four microenvironmental signatures were used to identify glioma microenvironment genes, and the samples were reasonably classified into three immune phenotypes. The molecular and clinical features of these phenotypes were characterized via key gene set expression, tumor mutation burden, fraction of immune cell infiltration, and functional enrichment. Exhausted CD8+ T cell (GET) signature construction with the predictive response to commonly used antitumor drugs and peritumoral edema assisted in further characterizing the immune phenotype features. A total of 2,466 glioma samples with gene expression profiles were enrolled. Tumor purity, ESTIMATE, and immune and stromal scores served as the 4 microenvironment signatures used to classify gliomas into immune-high, immune-middle and immune-low groups, which had distinct immune heterogeneity and clinicopathological characteristics. The immune-H phenotype had higher expression of four immune signatures; however, most checkpoint molecules exhibited poor survival. Enriched pathways among the subtypes were related to immunity. The GET score was similar among the three phenotypes, while immune-L was more sensitive to bortezomib, cisplatin, docetaxel, lapatinib, and rapamycin prescriptions and displayed mild peritumor edema. The three novel immune phenotypes with distinct immunogenetic features could have utility for understanding glioma microenvironment regulation and determining prognosis. These results contribute to classifying glioma subtypes, remodeling the immunosuppressive microenvironment and informing novel cancer immunotherapy in the era of precision immuno-oncology.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A954-A955
Author(s):  
Jacob Kaufman ◽  
Doug Cress ◽  
Theresa Boyle ◽  
David Carbone ◽  
Neal Ready ◽  
...  

BackgroundLKB1 (STK11) is a commonly disrupted tumor suppressor in NSCLC. Its loss promotes an immune exclusion phenotype with evidence of low expression of interferon stimulated genes (ISG) and decreased microenvironment immune infiltration.1 2 Clinically, LKB1 loss induces primary immunotherapy resistance.3 LKB1 is a master regulator of a complex downstream kinase network and has pleiotropic effects on cell biology. Understanding the heterogeneous phenotypes associated with LKB1 loss and their influence on tumor-immune biology will help define and overcome mechanisms of immunotherapy resistance within this subset of lung cancer.MethodsWe applied multi-omic analyses across multiple lung adenocarcinoma datasets2 4–6 (>1000 tumors) to define transcriptional and genetic features enriched in LKB1-deficient lung cancer. Top scoring phenotypes exhibited heterogeneity across LKB1-loss tumors, and were further interrogated to determine association with increased or decreased markers of immune activity. Further, immune cell-types were estimated by Cibersort to identify effects of LKB1 loss on the immune microenvironment. Key conclusions were confirmed by blinded pathology review.ResultsWe show that LKB1 loss significantly affects differentiation patterns, with enrichment of ASCL1-expressing tumors with putative neuroendocrine differentiation. LKB1-deficient neuroendocrine tumors had lower expression of Interferon Stimulated Genes (ISG), MHC1 and MHC2 components, and immune infiltration compared to LKB1-WT and non-neuroendocrine LKB1-deficient tumors (figure 1).The abundances of 22 immune cell types assessed by Cibersort were compared between LKB1-deficient and LKB1-WT tumors. We observe skewing of immune microenvironmental composition by LKB1 loss, with lower abundance of dendritic cells, monocytes, and macrophages, and increased levels of neutrophils and plasma cells (table 1). These trends were most pronounced among tumors with neuroendocrine differentiation, and were concordant across three independent datasets. In a confirmatory subset of 20 tumors, plasma cell abundance was assessed by a blinded pathologist. Pathologist assessment was 100% concordant with Cibersort prediction, and association with LKB1 loss was confirmed (P=0.001).Abstract 909 Figure 1Immune-associated Gene Expression Profiles Affected by Neuroendocrine Differentiation within LKB1-Deficient Lung Adenocarcinomas. Gene expression profiles corresponding to five immune-associated phenotypes are shown with bars indicating average GEP scores for tumors grouped according to LKB1 and neuroendocrine status as indicated. P-values represent results from Student’s T-test between groups as indicated.Abstract 909 Table 1LKB1 Loss Affects Composition of Immune Microenvironment. Values indicate log10 P-values comparing LKB1-loss to LKB1-WT tumors. Positive (red) indicates increased abundance in LKB1 loss. Negative (blue) indicates decreased abundance.ConclusionsWe conclude that tumor differentiation patterns strongly influence the immune microenvironment and immune exclusion characteristics of LKB1-deficient tumors. Neuroendocrine differentiation is associated with the strongest immune exclusion characteristics and should be evaluated clinically for evidence of immunotherapy resistance. A novel observation of increased plasma cell abundance is observed across multiple datasets and confirmed by pathology. Causal mechanisms linking differentiation status to immune activity is not well understood, and the functional role of plasma cells in the immune biology of LKB1-deficient tumors is undefined. These questions warrant further study to inform precision immuno-oncology treatments for these patients.AcknowledgementsThis work was funded by SITC AZ Immunotherapy in Lung Cancer grant (SPS256666) and DOD Lung Cancer Research Program Concept Award (LC180633).ReferencesSkoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015;5:860–77.Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 2016;35:3209–16.Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery 2018;8:822-835.Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543–50.Chitale D, Gong Y, Taylor BS, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009;28:2773–83.Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008;14:822–7.


2021 ◽  
Vol 22 (21) ◽  
pp. 11478
Author(s):  
Qi He ◽  
Maria Jamalpour ◽  
Eric Bergquist ◽  
Robin L. Anderson ◽  
Karin Gustafsson ◽  
...  

Metastasis reflects both the inherent properties of tumor cells and the response of the stroma to the presence of the tumor. Vascular barrier properties, either due to endothelial cell (EC) or pericyte function, play an important role in metastasis in addition to the contribution of the immune system. The Shb gene encodes the Src homology-2 domain protein B that operates downstream of tyrosine kinases in both vascular and immune cells. We have investigated E0771.lmb breast carcinoma metastasis in mice with conditional deletion of the Shb gene using the Cdh5-CreERt2 transgene, resulting in inactivation of the Shb-gene in EC and some hematopoietic cell populations. Lung metastasis from orthotopic tumors, tumor vascular and immune cell characteristics, and immune cell gene expression profiles were determined. We found no increase in vascular leakage that could explain the observed increase in metastasis upon the loss of Shb expression. Instead, Shb deficiency in EC promoted the recruitment of monocytic/macrophagic myeloid-derived suppressor cells (mMDSC), an immune cell type that confers a suppressive immune response, thus enhancing lung metastasis. An MDSC-promoting cytokine/chemokine profile was simultaneously observed in tumors grown in mice with EC-specific Shb deficiency, providing an explanation for the expanded mMDSC population. The results demonstrate an intricate interplay between tumor EC and immune cells that pivots between pro-tumoral and anti-tumoral properties, depending on relevant genetic and/or environmental factors operating in the microenvironment.


Author(s):  
Duccio Cavalieri ◽  
Piero Dolara ◽  
Enrico Mini ◽  
Cristina Luceri ◽  
Cinzia Castagnini ◽  
...  

2017 ◽  
Author(s):  
Kazuya Yasui ◽  
Takeshi Nagasaka ◽  
Toshiaki Toshima ◽  
Takashi Kawai ◽  
Kunitoshi Shigeyasu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document