scholarly journals Effect of Pulse Current and Pre-annealing on Thermal Extrusion of Cu in Through-Silicon via (TSV)

2020 ◽  
Vol 8 ◽  
Author(s):  
Youjung Kim ◽  
Sanghyun Jin ◽  
Kimoon Park ◽  
Jinhyun Lee ◽  
Jae-Hong Lim ◽  
...  
2008 ◽  
Author(s):  
Subhash L. Shinde ◽  
Todd M. Bauer ◽  
Jordan E. Massad ◽  
Dale L. Hetherington

2017 ◽  
Vol E100.C (12) ◽  
pp. 1108-1117 ◽  
Author(s):  
Tianming NI ◽  
Huaguo LIANG ◽  
Mu NIE ◽  
Xiumin XU ◽  
Aibin YAN ◽  
...  

2009 ◽  
Vol 1 (2) ◽  
pp. 18-20
Author(s):  
Dahyunir Dahlan

Copper oxide particles were electrodeposited onto indium tin oxide (ITO) coated glass substrates. Electrodeposition was carried out in the electrolyte containing cupric sulphate, boric acid and glucopone. Both continuous and pulse currents methods were used in the process with platinum electrode, saturated calomel electrode (SCE) and ITO electrode as the counter, reference and working electrode respectively. The deposited particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that, using continuous current deposition, the deposited particles were mixture of Cu2O and CuO particles. By adding glucopone in the electrolyte, particles with spherical shapes were produced. Electrodeposition by using pulse current, uniform cubical shaped Cu2O particles were produced


2019 ◽  
Vol 9 (2) ◽  
pp. 192-197
Author(s):  
Somrita Ghosh ◽  
Aritra Acharyya

Background: The time and frequency responses of Multiple Quantum Barrier (MQB) nano-scale Avalanche Photodiodes (APDs) based on Si~3C-SiC material system have been investigated in this final part. Methods: A very narrow rectangular pulse of pulse-width of 0.4 ps has been used as the input optical pulse having 850 nm wavelength incidents on the p+-side of the MQB APD structures and corresponding current responses have been calculated by using a simulation method developed by the authors. Results: Finally the frequency responses of the devices are obtained via the Fourier transform of the corresponding pulse current responses in time domain. Conclusion: Simulation results show that MQB nano-APDs possess significantly faster time response and wider frequency response as compared to the flat Si nano-APDs under similar operating conditions.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1233
Author(s):  
Yuchao Zhao ◽  
Nan Ye ◽  
Haiou Zhuo ◽  
Chaolong Wei ◽  
Weiwei Zhou ◽  
...  

Tungsten-copper (W–Cu) composites are widely used as electrical contact materials, resistance welding, electrical discharge machining (EDM), and plasma electrode materials due to their excellent arc erosion resistance, fusion welding resistance, high strength, and superior hardness. However, the traditional preparation methods pay little attention to the compactness and microstructural uniformity of W–Cu composites. Herein, W–Cu composite coatings are prepared by pulse electroplating using nano-W powder as raw material and the influence of forward-reverse duty cycle of pulse current on the structure and mechanical properties is systematically investigated. Moreover, the densification mechanism of the W–Cu composite coating is analyzed from the viewpoints of forward-pulse plating and reverse-pulse plating. At the current density (J) of 2 A/dm2, frequency (f) of 1500 Hz, forward duty cycle (df) of 40% and reverse duty cycle (dr) of 10%, the W–Cu composite coating rendered a uniform microstructure and compact structure, resulting in a hardness of 127 HV and electrical conductivity of 53.7 MS/m.


Sign in / Sign up

Export Citation Format

Share Document