scholarly journals Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators

2020 ◽  
Vol 8 ◽  
Author(s):  
Jing Xu ◽  
Yongjiu Zou ◽  
Ardo Nashalian ◽  
Jun Chen

Triboelectric Nanogenerators (TENGs) are a highly efficient approach for mechanical-to-electrical energy conversion based on the coupling effects of contact electrification and electrostatic induction. TENGs have been intensively applied as both sustainable power sources and self-powered active sensors with a collection of compelling features, including lightweight, low cost, flexible structures, extensive material selections, and high performances at low operating frequencies. The output performance of TENGs is largely determined by the surface triboelectric charges density. Thus, manipulating the surface chemical properties via appropriate modification methods is one of the most fundamental strategies to improve the output performances of TENGs. This article systematically reviews the recently reported chemical modification methods for building up high-performance TENGs from four aspects: functional groups modification, ion implantation and decoration, dielectric property engineering, and functional sublayers insertion. This review will highlight the contribution of surface chemistry to the field of triboelectric nanogenerators by assessing the problems that are in desperate need of solving and discussing the field's future directions.

2010 ◽  
Vol 1266 ◽  
Author(s):  
Dechao Wang ◽  
Anji Reddy Munnangi ◽  
Horst Hahn ◽  
Max Fichtner

AbstractSolid-state based battery technology offers, in principle, the largest temperature range (from room temperature to 500 °C) of any battery technology. In fluoride based batteries, the chemical reaction used to create electrical energy is a solid-state reaction of a metal with fluoride anion [1]. Among the various types of solid preparation techniques, the mechanochemical synthesis has been recognized as a powerful route to novel, high-performance, and low-cost materials [2]. Thus, a mixed and highly disordered fluoride phase with retained cubic symmetry can be obtained with a very high Fˉ diffusivity [3].In our group, a series of new electrolytes was developed, namely LaF3-BaF2-KF solid solutions, using mechanosynthesis method. The cubic structure of the product was confirmed by XRD. The nanoscale nature and morphology of the samples were characterized by SEM and TEM. First Solid-state electrochemical cells were built with LiF based composite cathode, LaF3-BaF2-KF derived electrolyte and Fe based composite anode.


2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


2012 ◽  
Vol 455-456 ◽  
pp. 889-894
Author(s):  
Qian Xiang

As anode material of battery, manganese dioxide has been widely used in zinc-manganese and lithium–manganese primary battery. To meet new electrical products’ requirements on high-performance battery, research on rechargeable lithium manganese button batteries with extensive operating temperature, superior-performance comprehensive electrochemistry and low cost has drawn attention from more and more researchers. This article has analyzed physical and chemical properties of lithium manganese composite oxides synthetic material, assembled lithium button batteries by synthetic sample and lithium aluminum alloy and discussed its electrochemistry performance, based on confirmed material proportioning, discussed the influence of roasting condition on synthetic material performance from physical & chemical properties and electrochemistry properties, and confirmed best roasting temperature and roasting time.


2016 ◽  
Vol 4 (6) ◽  
pp. 2096-2104 ◽  
Author(s):  
Fei Li ◽  
Hao Chen ◽  
Xiao Ying Liu ◽  
Shi Jin Zhu ◽  
Jia Qi Jia ◽  
...  

The development of portable and wearable electronics has promoted the increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jinmei Liu ◽  
Long Gu ◽  
Nuanyang Cui ◽  
Qi Xu ◽  
Yong Qin ◽  
...  

In the past decades, the progress of wearable and portable electronics is quite rapid, but the power supply has been a great challenge for their practical applications. Wearable power sources, especially wearable energy-harvesting devices, provide some possible solutions for this challenge. Among various wearable energy harvesters, the high-performance fabric-based triboelectric nanogenerators (TENGs) are particularly significant. In this review paper, we first introduce the fundamentals of TENGs and their four basic working modes. Then, we will discuss the material synthesis, device design, and fabrication of fabric-based TENGs. Finally, we try to give some problems that need to be solved for the further development of TENGs.


Nano Energy ◽  
2019 ◽  
Vol 66 ◽  
pp. 104117 ◽  
Author(s):  
Yu Bai ◽  
Liang Xu ◽  
Chuan He ◽  
Laipan Zhu ◽  
Xiaodan Yang ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 14 ◽  
Author(s):  
Henrik Andersson ◽  
Pavol Šuly ◽  
Göran Thungström ◽  
Magnus Engholm ◽  
Renyun Zhang ◽  
...  

Flexible electronics is a field gathering a growing interest among researchers and companies with widely varying applications, such as organic light emitting diodes, transistors as well as many different sensors. If the circuit should be portable or off-grid, the power sources available are batteries, supercapacitors or some type of power generator. Thermoelectric generators produce electrical energy by the diffusion of charge carriers in response to heat flux caused by a temperature gradient between junctions of dissimilar materials. As wearables, flexible electronics and intelligent packaging applications increase, there is a need for low-cost, recyclable and printable power sources. For such applications, printed thermoelectric generators (TEGs) are an interesting power source, which can also be combined with printable energy storage, such as supercapacitors. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), or PEDOT:PSS, is a conductive polymer that has gathered interest as a thermoelectric material. Plastic substrates are commonly used for printed electronics, but an interesting and emerging alternative is to use paper. In this article, a printed thermoelectric generator consisting of PEDOT:PSS and silver inks was printed on two common types of paper substrates, which could be used to power electronic circuits on paper.


Author(s):  
Yongjia Wu ◽  
Lei Zuo ◽  
Kan Sun

Thermoelectrics enables thermal and electrical energy conversion or device cooling without any moving parts. It has remained a significant challenge to manufacture compact and high performance thermoelectric modules in a large volume using the conventional methods because of their drawbacks in practice, such as the long processing time and misalignment of individual thermoelectric elements. Selective laser melting (SLM) based additive manufacturing approach might offer a unique method to fabricate the low cost, reliable, highly efficient, scalable, and environmentally friendly thermoelectric modules. To understand the thermodynamic and hydrodynamic phenomenon during the SLM processing is of critical importance to ensure high quality products. In this paper, we developed a model which can be used to guide the SLM manufacturing of thermoelectric material with other nanoparticles embedded for higher thermoelectric performance. This physical model based on the continuous equations had the ability to analyze the fluid flow driven by buoyancy force and surface tension, which can be used to analyze the influence of the process parameters on the pool size, particle segregation, as well as temperature distribution within the powder bed. This information is very useful for developing robust SLM for thermoelectric device fabrication.


2014 ◽  
Vol 1035 ◽  
pp. 385-391
Author(s):  
Pei Yu Wang ◽  
Guo Heng Zhang ◽  
Hai Yan Jiao ◽  
Xiao Ping Zheng

In this paper, Pine needles (PNs) were used to synthesize porous activated carbon by the carbonization and activation processes. The material for PNs were carbonized at 600 °C and activated at 800 °C(denoted as AC-800) show typical amorphous character, and display porous structures with high specific surface areas 2729 m2/g via XRD and BET measurements. As the electro-active material, AC-800 electrode exhibit ideal capacitive behaviors in aqueous electrolytes, and the maximal specific capacitance is as high as 286 F/g at the current density of 1 A/g. Furthermore, AC-800 electrode shows excellent electrochemical cycle stability with ~94 % initial capacitance being retained after 2000 cycles. The desirable capacitive performances enable the PNs to act as a new biomass source of carbonaceous materials for high performance supercapacitors and low-cost electrical energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document