scholarly journals Preparation of Polyamidoamine Dendrimer Modified Magnetic Nanoparticles and Its Application for Reliable Measurement of Sudan Red Contaminants in Natural Waters at Parts-Per-Billion Levels

2021 ◽  
Vol 9 ◽  
Author(s):  
Yalin Wu ◽  
Huahua Bai ◽  
Qingxiang Zhou ◽  
Shuangying Li ◽  
Yayang Tong ◽  
...  

The health threat from Sudan red dyes has been the subject of much attention in recent years and is crucial to design and establish reliable measurement technologies. In the present study, a new magnetic nanomaterial, polyamidoamine dendrimer-modified magnetic nanoparticles (Gn-MNPs), was synthesized and characterized. The nanomaterials had good adsorption capacity for Sudan dyes from natural waters. G1.5-MNPs possessed excellent adsorption capacity and a linear adsorption relationship over the range from 0.02 to 300 μg L−1 of Sudan dyes with relative coefficients all larger than 0.996. The sensitivity of the proposed method was excellent with detection limits over the range from 1.8 to 5.5 ng L−1 and the precision was less than 3.0%. G1.5-MNPs showed a remarkable application potential for the enrichment of trace environment pollutants in aqueous samples and the developed method based on this nanomaterial could be a robust and reliable alternative tool for routine monitoring of such pollutants.

2020 ◽  
Vol 12 (44) ◽  
pp. 5332-5343
Author(s):  
Mojtaba Rahimi Moghadam ◽  
Behrooz Zargar ◽  
Saadat Rastegarzadeh

This study was conducted to synthesize magnetic nanoparticles modified with generation 5 polyamidoamine dendrimer and apply them as a sorbent in the dispersive-micro-solid phase extraction method for preconcentration of metribuzin in water samples.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7500
Author(s):  
Christos Liosis ◽  
Athina Papadopoulou ◽  
Evangelos Karvelas ◽  
Theodoros E. Karakasidis ◽  
Ioannis E. Sarris

Research on contamination of groundwater and drinking water is of major importance. Due to the rapid and significant progress in the last decade in nanotechnology and its potential applications to water purification, such as adsorption of heavy metal ion from contaminated water, a wide number of articles have been published. An evaluating frame of the main findings of recent research on heavy metal removal using magnetic nanoparticles, with emphasis on water quality and method applicability, is presented. A large number of articles have been studied with a focus on the synthesis and characterization procedures for bare and modified magnetic nanoparticles as well as on their adsorption capacity and the corresponding desorption process of the methods are presented. The present review analysis shows that the experimental procedures demonstrate high adsorption capacity for pollutants from aquatic solutions. Moreover, reuse of the employed nanoparticles up to five times leads to an efficiency up to 90%. We must mention also that in some rare occasions, nanoparticles have been reused up to 22 times.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 193-205
Author(s):  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Taile Leswifi ◽  
Maurice S. Onyango

The presence of toxic metals in surface and natural waters, even at trace levels, poses a great danger to humans and the ecosystem. Although the combination of adsorption and coagulation techniques has the potential to eradicate this problem, the use of inappropriate media remains a major drawback. This study reports on the application of NaNO2/NaHCO3 modified sawdust-based cellulose nanocrystals (MCNC) as both coagulant and adsorbent for the removal of Cu, Fe and Pb from aqueous solution. The surface modified coagulants, prepared by electrostatic interactions, were characterized using Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS). The amount of coagulated/adsorbed trace metals was then analysed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). SEM analysis revealed the patchy and distributed floccules on Fe-flocs, which was an indication of multiple mechanisms responsible for Fe removal onto MCNC. A shift in the peak position attributed to C2H192N64O16 from 2θ = 30 to 24.5° occurred in the XRD pattern of both Pb- and Cu-flocs. Different process variables, including initial metal ions concentration (10–200 mg/L), solution pH (2–10), and temperature (25–45 °C) were studied in order to investigate how they affect the reaction process. Both Cu and Pb adsorption followed the Langmuir isotherm with a maximum adsorption capacity of 111.1 and 2.82 mg/g, respectively, whereas the adsorption of Fe was suggestive of a multilayer adsorption process; however, Fe Langmuir maximum adsorption capacity was found to be 81.96 mg/g. The sequence of trace metals removal followed the order: Cu > Fe > Pb. The utilization of this product in different water matrices is an effective way to establish their robustness.


Langmuir ◽  
2011 ◽  
Vol 27 (6) ◽  
pp. 3106-3112 ◽  
Author(s):  
Fei Xu ◽  
James H. Geiger ◽  
Gregory L. Baker ◽  
Merlin L. Bruening

2021 ◽  
Vol 22 (12) ◽  
pp. 6571
Author(s):  
Yu-Chen Liu ◽  
Katragunta Kumar ◽  
Cheng-Hsiu Wu ◽  
Kai-Chih Chang ◽  
Cheng-Kang Chiang ◽  
...  

A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.


Sign in / Sign up

Export Citation Format

Share Document