scholarly journals Accurate Analysis of Anisotropic Carrier Mobility and Structure–property Relationships in Organic BOXD Crystalline Materials

2021 ◽  
Vol 9 ◽  
Author(s):  
Shi-Ping Wang ◽  
Yu Wang ◽  
Fang-Yi Chen ◽  
Hai-Tao Wang ◽  
Fu-Kit Sheong ◽  
...  

Charge mobility is an essential factor of organic crystalline materials. Although many investigators have made important progress, the exact relationship between the crystal structure and carrier mobility remains to be clarified. Fortunately, a series of bis-1,3,4-oxadiazole derivatives have been successfully prepared and reported. They have similar main molecular fragments but different crystal packing modes, which provide an ideal research objective for studying the effect of molecular packing on charge mobility in organic photoelectric conversion systems. In this work, the charge mobilities of these molecules are systematically evaluated from the perspective of first-principles calculation, and the effect of a molecular overlap on orbital overlap integral and final charge carrier mobility is fully discussed. It can be seen that the small intermolecular distance (less than 6 Å) is the decisive factor to achieve high electron mobility in π stacking, and better mobility can be obtained by increasing the hole migration distance appropriately. A larger dihedral angle of anisotropy is an important point limiting the charge mobility in the herringbone arrangement. It is hoped that the correlation results between the crystal structure and mobility can assist the experimental study and provide an effective way to improve the photoelectric conversion efficiency of the organic semiconductor devices and multiple basis for multiscale material system characterization and material information.

2018 ◽  
Author(s):  
Francesco Salerno ◽  
Beth Rice ◽  
Julia Schmidt ◽  
Matthew J. Fuchter ◽  
Jenny Nelson ◽  
...  

<p>The properties of an organic semiconductor are dependent on both the chemical structure of the molecule involved, and how it is arranged in the solid-state. It is challenging to extract the influence of each individual factor, as small changes in the molecular structure often dramatically change the crystal packing and hence solid-state structure. Here, we use calculations to explore the influence of the nitrogen position on the charge mobility of a chiral organic molecule when the crystal packing is kept constant. The transfer integrals for a series of enantiopure aza[6]helicene crystals sharing the same packing were analysed in order to identify the best supramolecular motifs to promote charge carrier mobility. The regioisomers considered differ only in the positioning of the nitrogen atom in the aromatic scaffold. The simulations showed that even this small change in the chemical structure has a strong effect on the charge transport in the crystal, leading to differences in charge mobility of up to one order of magnitude. Some aza[6]helicene isomers that were packed interlocked with each other showed high HOMO-HOMO integrals (up to 70 meV), whilst molecules arranged with translational symmetry generally afforded the highest LUMO-LUMO integrals (40 - 70 meV). As many of the results are not intuitively obvious, a computational approach provides additional insight into the design of new semiconducting organic materials.</p>


2018 ◽  
Author(s):  
Francesco Salerno ◽  
Beth Rice ◽  
Julia Schmidt ◽  
Matthew J. Fuchter ◽  
Jenny Nelson ◽  
...  

<p>The properties of an organic semiconductor are dependent on both the chemical structure of the molecule involved, and how it is arranged in the solid-state. It is challenging to extract the influence of each individual factor, as small changes in the molecular structure often dramatically change the crystal packing and hence solid-state structure. Here, we use calculations to explore the influence of the nitrogen position on the charge mobility of a chiral organic molecule when the crystal packing is kept constant. The transfer integrals for a series of enantiopure aza[6]helicene crystals sharing the same packing were analysed in order to identify the best supramolecular motifs to promote charge carrier mobility. The regioisomers considered differ only in the positioning of the nitrogen atom in the aromatic scaffold. The simulations showed that even this small change in the chemical structure has a strong effect on the charge transport in the crystal, leading to differences in charge mobility of up to one order of magnitude. Some aza[6]helicene isomers that were packed interlocked with each other showed high HOMO-HOMO integrals (up to 70 meV), whilst molecules arranged with translational symmetry generally afforded the highest LUMO-LUMO integrals (40 - 70 meV). As many of the results are not intuitively obvious, a computational approach provides additional insight into the design of new semiconducting organic materials.</p>


Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Dongqing Lin ◽  
Wenhua Zhang ◽  
Hang Yin ◽  
Haixia Hu ◽  
Yang Li ◽  
...  

High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length (lp≈41 nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant (k=8.43) of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high-k feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of 3.94×10−3 cm2 V−1 s−1, surpassing most of the amorphous π-conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.


2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


2020 ◽  
Vol 49 (12) ◽  
pp. 3766-3774 ◽  
Author(s):  
Jianping Li ◽  
Dai Wu ◽  
Chunlei Wang ◽  
Ding Liu ◽  
Weilin Chen ◽  
...  

The strategy of constructing a 2D flexible superlattice polyoxometalate/rGO heterojunction is proposed to improve the photoelectric conversion efficiency of photovoltaic devices.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2460
Author(s):  
Jian Zou ◽  
Mengnan Liu ◽  
Shuyu Tan ◽  
Zhijie Bi ◽  
Yong Wan ◽  
...  

A two-dimensional perovskite photonic crystal structure of Methylamine lead iodide (CH3NH3PbI3, MAPbI3) is rationally designed as the absorption layer for solar cells. The photonic crystal (PC) structure possesses the distinct “slow light” and band gap effect, leading to the increased absorption efficiency of the absorption layer, and thus the increased photoelectric conversion efficiency of the battery. Simulation results indicate that the best absorption efficiency can be achieved when the scattering element of indium arsenide (InAs) cylinder is arranged in the absorption layer in the form of tetragonal lattice with the height of 0.6 μm, the diameter of 0.24 μm, and the lattice constant of 0.4 μm. In the wide wavelength range of 400–1200 nm, the absorption efficiency can be reached up to 82.5%, which is 70.1% higher than that of the absorption layer without the photonic crystal structure. In addition, the absorption layer with photonic crystal structure has good adaptability to the incident light angle, presenting the stable absorption efficiency of 80% in the wide incident range of 0–80°. The results demonstrate that the absorption layer with photonic crystal structure can realize the wide spectrum, wide angle, and high absorption of incident light, resulting in the increased utilization efficiency of solar energy.


2021 ◽  
Vol 33 (10) ◽  
pp. 2170075
Author(s):  
Ze‐Fan Yao ◽  
Yu‐Qing Zheng ◽  
Jin‐Hu Dou ◽  
Yang Lu ◽  
Yi‐Fan Ding ◽  
...  

2019 ◽  
Vol 7 (22) ◽  
pp. 6649-6655
Author(s):  
A. López-Andarias ◽  
C. Atienza ◽  
J. López-Andarias ◽  
W. Matsuda ◽  
T. Sakurai ◽  
...  

Effect of the peptide-based quaterthiophene self-assembly process on the charge mobility properties of the n/p-materials formed is studied.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan H. Gosling ◽  
Oleg Makarovsky ◽  
Feiran Wang ◽  
Nathan D. Cottam ◽  
Mark T. Greenaway ◽  
...  

AbstractPristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures.


Sign in / Sign up

Export Citation Format

Share Document