scholarly journals Association Between Oral Microbiota and Cigarette Smoking in the Chinese Population

Author(s):  
Yi-Jing Jia ◽  
Ying Liao ◽  
Yong-Qiao He ◽  
Mei-Qi Zheng ◽  
Xia-Ting Tong ◽  
...  

The oral microbiota has been observed to be influenced by cigarette smoking and linked to several human diseases. However, research on the effect of cigarette smoking on the oral microbiota has not been systematically conducted in the Chinese population. We profiled the oral microbiota of 316 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The alpha diversity of oral microbiota was different between never smokers and smokers (P = 0.002). Several bacterial taxa were first reported to be associated with cigarette smoking by LEfSe analysis, including Moryella (q = 1.56E-04), Bulleidia (q = 1.65E-06), and Moraxella (q = 3.52E-02) at the genus level and Rothia dentocariosa (q = 1.55E-02), Prevotella melaninogenica (q = 8.48E-08), Prevotella pallens (q = 4.13E-03), Bulleidia moorei (q = 1.79E-06), Rothia aeria (q = 3.83E-06), Actinobacillus parahaemolyticus (q = 2.28E-04), and Haemophilus parainfluenzae (q = 4.82E-02) at the species level. Two nitrite-producing bacteria that can increase the acidity of the oral cavity, Actinomyces and Veillonella, were also enriched in smokers with FDR-adjusted q-values of 3.62E-06 and 1.10E-06, respectively. Notably, we observed that two acid production-related pathways, amino acid-related enzymes (q = 6.19E-05) and amino sugar and nucleotide sugar metabolism (q = 2.63E-06), were increased in smokers by PICRUSt analysis. Finally, the co-occurrence analysis demonstrated that smoker-enriched bacteria were significantly positively associated with each other and were negatively correlated with the bacteria decreased in smokers. Our results suggested that cigarette smoking may affect oral health by creating a different environment by altering bacterial abundance, connections among oral microbiota, and the microbiota and their metabolic function.

Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1346 ◽  
Author(s):  
Nuria Jiménez-Hernández ◽  
Sergio Serrano-Villar ◽  
Alba Domingo ◽  
Xavier Pons ◽  
Alejandro Artacho ◽  
...  

Human immunodeficiency virus (HIV) infection is characterized by an early depletion of the mucosal associated T helper (CD4+) cells that impair the host immunity and impact the oral and gut microbiomes. Although, the HIV-associated gut microbiota was studied in depth, few works addressed the dysbiosis of oral microbiota in HIV infection and, to our knowledge, no studies on intervention with prebiotics were performed. We studied the effect of a six-week-long prebiotic administration on the salivary microbiota in HIV patients and healthy subjects. Also, the co-occurrence of saliva microorganisms in the fecal bacteria community was explored. We assessed salivary and feces microbiota composition using deep 16S ribosomal RNA (rRNA) gene sequencing with Illumina methodology. At baseline, the different groups shared the same most abundant genera, but the HIV status had an impact on the saliva microbiota composition and diversity parameters. After the intervention with prebiotics, we found a drastic decrease in alpha diversity parameters, as well as a change of beta diversity, without a clear directionality toward a healthy microbiota. Interestingly, we found a differential response to the prebiotics, depending on the initial microbiota. On the basis of 100% identity clustering, we detected saliva sequences in the feces datasets, suggesting a drag of microorganisms from the upper to the lower gastrointestinal tract.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4224
Author(s):  
Ramon V. Cortez ◽  
Andrea Fernandes ◽  
Luiz Gustavo Sparvoli ◽  
Marina Padilha ◽  
Rubens Feferbaum ◽  
...  

The initial colonization of the human microbiota is of paramount importance. In this context, the oropharyngeal administration of colostrum is a safe, viable, and well-tolerated practice even by the smallest preterm infants. Therefore, this study evaluated the effects of oropharyngeal administration of colostrum on the establishment of preterm infants’ oral microbiota. A longitudinal observational study was carried out with 20 premature neonates, divided into two groups: one receiving the protocol (Oropharyngeal Administration of Colostrum; OAC) and the other one receiving Standard Caare (SC). Saliva samples were collected from the newborns weekly during the study period (from the day of birth until the 21st day of life) for analysis of oral microbiota through 16S rRNA gene sequencing. We observed that the colonization of the oral microbiota of preterm newborns preseanted a higher relative abundance of Staphylococcus on the 7th day of life, mainly in the OAC group. Additionally, an increased abundance of Bifidobacterium and Bacteroides was observed in the OAC group at the first week of life. Regarding alpha and beta diversity, time was a key factor in the oral modulation of both groups, showing how dynamic this environment is in early life.


2020 ◽  
Vol 87 (3) ◽  
pp. 360-363
Author(s):  
Diego Araújo Frazilio ◽  
Otávio Guilherme Gonçalves de Almeida ◽  
Carlos Augusto Fernandes de Oliveira ◽  
Sarah Hwa In Lee ◽  
Carlos Humberto Corassin ◽  
...  

AbstractFor this research communication, 90 samples of a Brazilian dairy were combined into four groups (raw material, final product, food-contact and non-food contact surfaces) and analyzed by metataxonomics based on 16S rRNA gene sequencing. The results showed high alpha-diversity indexes for final product and non-food contact surfaces but, overall, beta-diversity indexes were low. The samples were separated in two main clusters, and the core microbiota was composed by Macrococcus, Alkaliphilus, Vagococcus, Lactobacillus, Marinilactibacillus, Streptococcus, Lysinibacillus, Staphylococcus, Clostridium, Halomonas, Lactococcus, Enterococcus, Bacillus and Psychrobacter. These results highlight that rare taxa occur in dairies, and this may aid the development of strategies for food protection.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shinya Kageyama ◽  
Mikari Asakawa ◽  
Toru Takeshita ◽  
Yukari Ihara ◽  
Shunsuke Kanno ◽  
...  

ABSTRACTNewborns are constantly exposed to various microbes from birth; hence, diverse commensal bacteria colonize the oral cavity. However, how or when these bacteria construct a complex and stable ecosystem remains unclear. This prospective cohort study examined the temporal changes in bacterial diversity and composition in tongue microbiota during infancy. We longitudinally collected a total of 464 tongue swab samples from 8 infants (age of <6 months at baseline) for approximately 2 years. We also collected samples from 32 children (aged 0 to 2 years) and 73 adults (aged 20 to 29 years) cross-sectionally as control groups. Bacterial diversities and compositions were determined by 16S rRNA gene sequencing. The tongue bacterial diversity in infancy, measured as the number of observed operational taxonomic units (OTUs), rapidly increased and nearly reached the same level as that in adults by around 80 weeks. The overall tongue bacterial composition in the transitional phase, 80 to 120 weeks, was more similar to that of adults than to that of the early exponential phase (EEP), 10 to 29 weeks, according to analysis of similarities. Dominant OTUs in the EEP corresponding toStreptococcus perorisandStreptococcus lactariusexponentially decreased immediately after EEP, around 30 to 49 weeks, whereas several OTUs corresponding toGranulicatella adiacens,Actinomyces odontolyticus, andFusobacterium periodonticumreciprocally increased during the same period. These results suggest that a drastic compositional shift of tongue microbiota occurs before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years.IMPORTANCEEvaluating the development of oral microbiota during infancy is important for understanding the subsequent colonization of bacterial species and the process of formation of mature microbiota in the oral cavity. We examined tongue microbiota longitudinally collected from 8 infants and found that drastic compositional shifts in tongue microbiota occur before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years. These results may be helpful for preventing the development of various diseases associated with oral microbiota throughout life.


2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Eric L. Brown ◽  
Heather T. Essigmann ◽  
Kristi L. Hoffman ◽  
Noah W. Palm ◽  
Sarah M. Gunter ◽  
...  

ABSTRACT Mucosal surfaces like those present in the lung, gut, and mouth interface with distinct external environments. These mucosal gateways are not only portals of entry for potential pathogens but also homes to microbial communities that impact host health. Secretory immunoglobulin A (SIgA) is the single most abundant acquired immune component secreted onto mucosal surfaces and, via the process of immune exclusion, shapes the architecture of these microbiomes. Not all microorganisms at mucosal surfaces are targeted by SIgA; therefore, a better understanding of the SIgA-coated fraction may identify the microbial constituents that stimulate host immune responses in the context of health and disease. Chronic diseases like type 2 diabetes are associated with altered microbial communities (dysbiosis) that in turn affect immune-mediated homeostasis. 16S rRNA gene sequencing of SIgA-coated/uncoated bacteria (IgA-Biome) was conducted on stool and saliva samples of normoglycemic participants and individuals with prediabetes or diabetes (n = 8/group). These analyses demonstrated shifts in relative abundance in the IgA-Biome profiles between normoglycemic, prediabetic, or diabetic samples distinct from that of the overall microbiome. Differences in IgA-Biome alpha diversity were apparent for both stool and saliva, while overarching bacterial community differences (beta diversity) were also observed in saliva. These data suggest that IgA-Biome analyses can be used to identify novel microbial signatures associated with diabetes and support the need for further studies exploring these communities. Ultimately, an understanding of the IgA-Biome may promote the development of novel strategies to restructure the microbiome as a means of preventing or treating diseases associated with dysbiosis at mucosal surfaces.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2125
Author(s):  
Limin Wei ◽  
Bo Zeng ◽  
Siyuan Zhang ◽  
Feng Li ◽  
Fanli Kong ◽  
...  

The gut microbiota coevolve with the host and can be stably transmitted to the offspring. Host genetics plays a crucial role in the composition and abundance of gut microbiota. Inbreeding can cause a decrease of the host’s genetic diversity and the heterozygosity. In this study, we used 16S rRNA gene sequencing to compare the differences of gut microbiota between the Diannan small-ear pig and Banna minipig inbred, aiming to understand the impact of inbreeding on the gut microbiota. Three dominant bacteria (Stenotrophlomonas, Streptococcus, and Lactobacillus) were steadily enriched in both the Diannan small-ear pig and Banna minipig inbred. After inbreeding, the gut microbiota alpha diversity and some potential probiotics (Bifidobacterium, Tricibacter, Ruminocaccae, Christensenellaceae, etc.) were significantly decreased, while the pathogenic Klebsiella bacteria was significantly increased. In addition, the predicted metagenomic analysis (PICRUSt2) indicated that several amino acid metabolisms (‘‘Valine, leucine, and isoleucine metabolism’’, ‘‘Phenylalanine, tyrosine, and tryptophan biosynthesis’’, ‘‘Histidine metabolism’’) were also markedly decreased after the inbreeding. Altogether our data reveal that host inbreeding altered the composition and the predicted function of the gut microbiome, which provides some data for the gut microbiota during inbreeding.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sebastian von Huth ◽  
Louise Bruun Thingholm ◽  
Corinna Bang ◽  
Malte C. Rühlemann ◽  
Andre Franke ◽  
...  

AbstractThe gut microbiota is recognized as having major impact in health and disease. Sample storage is an important aspect to obtain reliable results. Mostly recommended is immediate freezing, however, this is not always feasible. Faecal occult blood test (FOBT) papers are an appealing solution in such situations, and most studies find these to be applicable, showing no major changes within 7 days storage at room temperature (RT). As fieldwork often requires RT storage for longer periods, evaluation of this is warranted. We performed 16S rRNA gene sequencing of 19 paired faecal samples immediately frozen or kept five weeks and five months at RT on FOBT papers. Alpha-diversity evaluation revealed no effect of FOBT storage, and evaluation of beta-diversity showed that host explained 65% of community variation, while storage method explained 5%. Evaluation of community dispersion and the Firmicutes/Bacteroidetes ratio revealed a larger effect of storage time for fresh-frozen samples. Single taxa evaluation (order-to-genus level) showed significant alterations of four (of 37) genera after five weeks and five genera after five months. When comparing the two timepoints, alterations were only detectable for fresh-frozen samples. Our findings reveal that long term storage on FOBT papers is an applicable approach for microbiota research.


2014 ◽  
Vol 63 (6) ◽  
pp. 805-811 ◽  
Author(s):  
Siu-Kei Chow ◽  
Jill E. Clarridge

The identification of Haemophilus spp. from urogenital sites can be challenging due to the lack of appropriate media for culturing the organisms and the poor resolution of biochemical methods. By incorporating chocolate agar and 16S rRNA gene sequence analysis in our protocol to identify Haemophilus spp. from urinary specimens, we isolated and characterized 30 genetically homogeneous strains of a cryptic species that is phylogenetically close to, but distinct from, Haemophilus parainfluenzae. Commercial biochemical kits and VITEK 2 could not distinguish between the two species. Over 90 % of the strains were isolated from urine and the urogenital area, made possible with the inclusion of chocolate agar in our urine culture protocol. In contrast, no Haemophilus strains isolated from respiratory specimens were identified as the cryptic genospecies. The cryptic genospecies was associated with urinary tract infections (UTIs) in certain patient populations. Distinct from Haemophilus quentinii that also causes urogenital infection, the cryptic genospecies required V factor (NAD) but not X factor (haemin) to grow. The data indicated that 16S rRNA gene sequencing may be necessary in identifying Haemophilus species and that inaccurate categorization of Haemophilus strains isolated from urogenital specimens based on phenotypic characteristics may prevent accurate diagnosis of UTIs.


2020 ◽  
Author(s):  
Houda Bahig ◽  
Clifton D Fuller ◽  
Aparna Mitra ◽  
Travis Solley ◽  
Sweet Ping Ng ◽  
...  

ABSTRACTPurposeTo describe the baseline and serial tumor microbiome in HPV-associated oropharynx cancer (OPC) over the course of radiotherapy (RT).MethodsPatients with newly diagnosed HPV-associated OPC treated with definitive radiotherapy +/- concurrent chemotherapy were enrolled in this prospective study. Using 16S rRNA gene sequencing, dynamic changes in tumor microbiome during RT were investigated. Surface tumor samples were obtained before RT and at week 1, 3 and 5 of RT. Radiological primary tumor response at mid-treatment was categorized as complete (CR) or partial (PR).ResultsTen patients were enrolled. Mean age was 63 years (range: 51-71). As per AJCC 8th Ed, 50%, 20% and 30% of patients had stage I, II and III, respectively. At 4-weeks, 7 patients had CR and 3 patients had PR; at follow-up imaging post treatment, all patients had CR. Baseline diversity of tumoral and buccal microbiomes was not statistically different. For the entire cohort, alpha diversity was significantly decreased over the course of treatment (p=0.02). There was a significant alteration in the bacterial community within the first week of radiation. Baseline tumor alpha diversity of patients with CR was significantly higher than those with PR (p=0.03). While patients with CR had significant reduction in diversity over the course of radiation (p=0.02), the diversity remained unchanged in patients with PR. Patients with history of smoking had significantly increased abundance of Granulicatella (p=0.04), and Kingella (0.05) and lower abundance of Alloprevotella (p=0.04) compared to never smokers.ConclusionsThe tumor microbiome of HPV-associated OPC exhibits reduced alpha diversity and altered taxa abundance over the course of radiotherapy. The baseline bacterial profiles of smokers vs. non-smokers were inherently different. Baseline tumor alpha diversity of patients with CR was higher than patients with PR, suggesting that the microbiome as a biomarker of radiation response deserves further investigation.


Sign in / Sign up

Export Citation Format

Share Document