scholarly journals Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections

Author(s):  
Yanjian Li ◽  
Hailong Li ◽  
Tianshu Sun ◽  
Chen Ding

Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.

2019 ◽  
Vol 93 ◽  
pp. 18-27 ◽  
Author(s):  
Eli Isael Maciel ◽  
Cen Jiang ◽  
Paul G. Barghouth ◽  
Clarissa J. Nobile ◽  
Néstor J. Oviedo

mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Jeffrey A. Melvin ◽  
Jordan R. Gaston ◽  
Shawn N. Phillips ◽  
Michael J. Springer ◽  
Christopher W. Marshall ◽  
...  

ABSTRACT How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance. Microorganisms exist in a diverse ecosystem and have evolved many different mechanisms for sensing and influencing the polymicrobial environment around them, utilizing both diffusible and contact-dependent signals. Contact-dependent growth inhibition (CDI) is one such communication system employed by Gram-negative bacteria. In addition to CDI mediation of growth inhibition, recent studies have demonstrated CDI-mediated control of communal behaviors such as biofilm formation. We postulated that CDI may therefore play an active role in host-pathogen interactions, allowing invading strains to establish themselves at polymicrobial mucosal interfaces through competitive interactions while simultaneously facilitating pathogenic capabilities via CDI-mediated signaling. Here, we show that Pseudomonas aeruginosa produces two CDI systems capable of mediating competition under conditions of growth on a surface or in liquid. Furthermore, we demonstrated a novel role for these systems in contributing to virulence in acute infection models, likely via posttranscriptional regulation of beneficial behaviors. While we did not observe any role for the P. aeruginosa CDI systems in biofilm biogenesis, we did identify for the first time robust CDI-mediated competition during interaction with a mammalian host using a model of chronic respiratory tract infection, as well as evidence that CDI expression is maintained in chronic lung infections. These findings reveal a previously unappreciated role for CDI in host-pathogen interactions and emphasize their importance during infection. IMPORTANCE How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance.


Author(s):  
Todd Patrick McCarty ◽  
Peter G. Pappas

In many ways, fungal diseases are forgotten or neglected. Given the significantly lower frequency compared to similar bacterial etiologies across the spectrum of infectious syndromes, it makes sense that anti-bacterial agents have seen the bulk of development in recent decades. The vast majority of new antifungal medications approved for use in the past 10 years have been new versions in the same class as existing agents. Clinical mycology is crying out for new mechanisms of action in the setting of rising resistance and emergence of new organisms. Fortunately, this trend appears to be reversing. There are numerous agents in advanced stages of development offering novel dosing regimens and mechanisms of action to combat these threats. Herein we review seven antifungal agents that we hope to see come to market in the coming years to aid physicians in the treatment of mucocutaneous and invasive fungal infections.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Gina Wall ◽  
Jose L. Lopez-Ribot

ABSTRACT Fungal organisms are ubiquitous in nature, and progress of modern medicine is creating an expanding number of severely compromised patients susceptible to a variety of opportunistic fungal infections. These infections are difficult to diagnose and treat, leading to high mortality rates. The limited antifungal arsenal, the toxicity of current antifungal drugs, the development of resistance, and the emergence of new multidrug-resistant fungi, all highlight the urgent need for new antifungal agents. Unfortunately, the development of a novel antifungal is a rather long and expensive proposition, and no new classes of antifungal agents have reached the market in the last 2 decades. Drug repurposing, or finding new indications for old drugs, represents a promising alternative pathway to drug development that is particularly appealing within the academic environment. In the last few years, there has been a growing interest in repurposing approaches in the antifungal arena, with multiple groups of investigators having performed screenings of different repurposing libraries against different pathogenic fungi in search for drugs with previously unrecognized antifungal effects. Overall, these repurposing efforts may lead to the fast deployment of drugs with novel antifungal activity, which can rapidly bring benefits to patients, while at the same time reducing health care costs.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Franziska Gerwien ◽  
Christine Dunker ◽  
Philipp Brandt ◽  
Enrico Garbe ◽  
Ilse D. Jacobsen ◽  
...  

ABSTRACT Typically, established lab strains are widely used to study host-pathogen interactions. However, to better reflect the infection process, the experimental use of clinical isolates has come more into focus. Here, we analyzed the interaction of multiple vaginal isolates of the opportunistic fungal pathogen Candida albicans, the most common cause of vulvovaginal candidiasis in women, with key players of the host immune system: macrophages. We tested several strains isolated from asymptomatic or symptomatic women with acute and recurrent infections. While all clinical strains showed a response similar to the commonly used lab strain SC5314 in various in vitro assays, they displayed remarkable differences during interaction with macrophages. This coincided with significantly reduced β-glucan exposure on the cell surface, which appeared to be a shared property among the tested vaginal strains for yeast extract/peptone/dextrose-grown cells, which is partly lost when the isolates faced vaginal niche-like nutrient conditions. However, macrophage damage, survival of phagocytosis, and filamentation capacities were highly strain-specific. These results highlight the high heterogeneity of C. albicans strains in host-pathogen interactions, which have to be taken into account to bridge the gap between laboratory-gained data and disease-related outcomes in an actual patient. IMPORTANCE Vulvovaginal candidiasis is one of the most common fungal infections in humans with Candida albicans as the major causative agent. This study is the first to compare clinical vaginal isolates of defined patient groups in their interaction with macrophages, highlighting the vastly different outcomes in comparison to a laboratory strain using commonly applied virulence-determining assays.


2003 ◽  
Vol 9 (6) ◽  
pp. 522-531 ◽  
Author(s):  
C.W. Mims ◽  
Gail J. Celio ◽  
Elizabeth A. Richardson

This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host–pathogen interactions in fungal diseases of plants. The specific host–pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host–pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host–pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.


2021 ◽  
Vol 11 (15) ◽  
pp. 7119
Author(s):  
Vijay Mishra ◽  
Manvendra Singh ◽  
Yachana Mishra ◽  
Nitin Charbe ◽  
Pallavi Nayak ◽  
...  

Fungal infections, from mild itching to fatal infections, lead to chronic diseases and death. Antifungal agents have incorporated chemical compounds and natural products/phytoconstituents in the management of fungal diseases. In contrast to antibacterial research, novel antifungal drugs have progressed more swiftly because of their mild existence and negligible resistance of infections to antifungal bioactivities. Nanotechnology-based carriers have gained much attention due to their magnificent abilities. Nanoarchitectures have served as excellent carriers/drug delivery systems (DDS) for delivering antifungal drugs with improved antifungal activities, bioavailability, targeted action, and reduced cytotoxicity. This review outlines the different fungal diseases and their treatment strategies involving various nanocarrier-based techniques such as liposomes, transfersomes, ethosomes, transethosomes, niosomes, spanlastics, dendrimers, polymeric nanoparticles, polymer nanocomposites, metallic nanoparticles, carbon nanomaterials, and nanoemulsions, among other nanotechnological approaches.


2019 ◽  
Vol 16 (5) ◽  
pp. 492-501 ◽  
Author(s):  
Prabhuodeyara Math Gurubasavaraj ◽  
Jasmith Shivayya Charantimath

Aim:The present review aims to explore the development of novel antifungal agents, such as pharmacology, pharmacokinetics, spectrum of activity, safety, toxicity and other aspects that involve drug-drug interactions of the azole antifungal agents.Introduction:Fungal infections in critically ill and immune-compromised patients are increasing at alarming rates, caused mainly by Candida albicans an opportunistic fungus. Despite antifungal annihilators like amphotericin B, azoles and caspofungin, these infections are enormously increasing. The unconventional increase in such patients is a challenging task for the management of antifungal infections especially Candidiasis. Moreover, problem of toxicity associated with antifungal drugs on hosts and rise of drug-resistance in primary and opportunistic fungal pathogens has obstructed the success of antifungal therapy.Conclusion:Hence, to conflict these problems new antifungal agents with advanced efficacy, new formulations of drug delivery and novel compounds which can interact with fungal virulence are developed and used to treat antifungal infections.


Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 581
Author(s):  
Buyu Zhang ◽  
Bohao Liu ◽  
Yinglin Zhou ◽  
Xinxiang Zhang ◽  
Qinghua Zou ◽  
...  

As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.


Sign in / Sign up

Export Citation Format

Share Document