scholarly journals Electromagnetic Field Associated With Dermoscope Magnets May Affect the Safety of Cardiac Implanted Electronic Devices Patients

2021 ◽  
Vol 8 ◽  
Author(s):  
Grzegorz Sławiński ◽  
Martyna Sławińska ◽  
Zbigniew Usarek ◽  
Michał Sobjanek ◽  
Maciej Kempa ◽  
...  

Dermoscopy is currently used as an auxiliary tool in general dermatology. Since some commercially available dermoscopes have built-in magnets, electromagnetic interference (EMI) may occur when examining cardiac implantable electronic devices (CIED) patients. The aim of the study was to create maps of electromagnetic fields defining a safe distance in terms of EMI. The study was performed in laboratory conditions using measuring equipment specially designed for this purpose. The following dermoscopes have been tested: Illuco IDS-1100, Visiomed Luminis, Visiomed Luminis 2, Heine NC2 with and without a contact plate, DermLite DL4, and DermLite Handyscope. Measurements were made for the following set of lift-off distances: 5, 10, 20, 30, 40, 50, and 150 mm. Each 2D scan consisted of 10-line scans shifted from each other by 10 mm. The strength of the magnetic field decreased with the distance from the faceplate. The distribution of the magnetic field differed depending on the position of the magnets. The highest magnetic field was recorded in the center of the Heine NC2 faceplate (up to 8 mT). In most cases, at a distance of 10 mm, the magnetic field strength was measured below 1 mT, with the exception of Heine NC2 and Heine NC2 with a contact plate. All tested dermoscopes generated a magnetic field of <1 mT at the distance of 20 mm. The use of dermoscopes with built-in magnets may affect the functioning of CIEDs, and the impact may vary depending on the type of dermoscope.

2020 ◽  
Vol 2020 (10) ◽  
pp. 4-11
Author(s):  
Victor Tikhomirov ◽  
Aleksandr Gorlenko ◽  
Stanislav Volohov ◽  
Mikhail Izmerov

The work purpose is the investigation of magnetic field impact upon properties of friction steel surfaces at fit stripping with tightness through manifested effects and their wear visually observed. On the spots of a real contact the magnetic field increases active centers, their amount and saturation with the time of dislocation outlet, and has an influence upon tribo-mating. The external electro-magnetic field promotes the increase of the number of active centers at the expense of dislocations outlet on the contact surface, and the increase of a physical contact area results in friction tie strengthening and growth of a friction factor. By the example of friction pairs of a spentonly unit in the suspension of coach cars there is given a substantiation of actuality and possibility for the creation of technical devices with the controlled factor of friction and the stability of effects achieved is also confirmed experimentally. Investigation methods: the fulfillment of laboratory physical experiments on the laboratory plant developed and patented on bush-rod samples inserted with the fit and tightness. The results of investigations and novelty: the impact of the magnetic field upon the value of a stripping force of a press fit with the guaranteed tightness is defined. Conclusion: there is a possibility to control a friction factor through the magnetic field impact upon a friction contact.


2020 ◽  
Vol 30 (6) ◽  
pp. 353-361
Author(s):  
Rebecca S. Dewey ◽  
Rachel Gomez ◽  
Chris Degg ◽  
David M. Baguley ◽  
Paul M. Glover

The sensation of phantom motion or exhibition of bodily sway is often reported in the proximity of an MR scanner. It is proposed that the magnetic field stimulates the vestibular system. There are a number of possible mechanisms responsible, and the relative contributions of susceptibility on the otolithic receptors and the Lorentz force on the cupulae have not yet been explored. This exploratory study aims to investigate the impact of being in the proximity of a 7.0 T MR scanner. The modified clinical test of sensory interaction on balance (mCTSIB) was used to qualitatively ascertain whether or not healthy control subjects who passed the mCTSIB in normal conditions 1) experienced subjective sensations of dizziness, vertigo or of leaning or shifting in gravity when in the magnetic field and 2) exhibited visibly increased bodily sway whilst in the magnetic field compared to outside the magnetic field. Condition IV of the mCTSIB was video recorded outside and inside the magnetic field, providing a semi-quantitative measure of sway. For condition IV of the mCTSIB (visual and proprioceptive cues compromised), all seven locations/orientations around the scanner yielded significantly more sway than at baseline (p < 0.01 FDR). A Student’s t-test comparing the RMS velocity of a motion marker on the upper arm during mCTSIB condition IV showed a significant increase in the amount of motion exhibited in the field (T = 2.59; d.f. = 9; p = 0.029) compared to outside the field. This initial study using qualitative measures of sway demonstrates that there is evidence for MR-naïve individuals exhibiting greater sway while performing the mCTSIB in the magnetic field compared to outside the field. Directional polarity of sway was not significant. Future studies of vestibular stimulation by magnetic fields would benefit from the development of a sensitive, objective measure of balance function, which can be performed inside a magnetic field.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Cueva-Parra ◽  
G Munoz-Benavides ◽  
W Ortiz-Solis ◽  
J Gomez-Flores ◽  
MF Marquez ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background - Introduction: The COVID-19 pandemic has generated serious repercussions on the health system, reducing the number of all cardiology procedures worldwide. Objectives Describe the impact of the COVID-19 pandemic on the procedures performed by the electrophysiology department in a national referral center.  Methods We made a retrospective review of our data base and we compared procedures made in the last 3 years since 2017 to 2019 with the procedures made in the 2020. We divide the procedures into two large groups: Cardiac Implantable Electronic Devices (CIED) related procedures (which included implants, revisions, changes, upgrades and extractions) and electrophysiological studies and ablations (which included conventional and complex procedures). Other types of procedures were no included. Results There was a significant reduction in all procedures, the average of procedures performed in the last 3 previous years was 467 (there were 479 in 2017, 411 in 2018 and 511 in 2019), while in 2020 we performed only 319 (p = 0.01); this represents a reduction of 33.4% in the total number of procedures performed in our center. There was no statistical difference regarding the CIED related procedures, the average of procedures of the last 3 previous years was 174 (there were 186 in 2017, 148 in 2018 and 188 in 2019), and in 2020 we performed 189 procedures, this value is near to the average of the last 3 previous years and very close to the value of the 2019 (p = 0.46). Regarding the electrophysiological studies and ablations, the average of procedures of the last 3 previous years was 293 (there were 293 in 2017, 263 in 2018 and 323 in 2019), while in 2020 we performed only 129 procedures, considerably decreasing compared to the previous years (p &lt; 0.01). The reduction in the electrophysiological studies and ablations was 55.97%. The most affected months were April, May and June. Conclusions The COVID-19 pandemic considerably affected the number of electrophysiological procedures in our center, reducing it by 33.4% compared to the previous years. The reduction of procedures fundamentally affected the electrophysiological studies and ablations, reducing them by 55.97%. The number of CIED related procedures were no affected. Electrophysiological procedures Procedures2017201820192017-2019 average2020CIED related procedures186148188174189Electrophysiological studies and ablations293263323293129Total479411511467319Comparative table of the electrophysiological procedures performed in our center in recent years.Abstract Figure. Comparison of the procedures.


2020 ◽  
Vol 22 (1-2) ◽  
pp. 58-64
Author(s):  
Teodora Gavrilov ◽  
◽  
Karolina Kasaš-Lažetić ◽  
Kristian Haška ◽  
Miroslav Prša

In this paper, the analysis of magnetic field distribution of overhead mixed power line (20 kV/0.4 kV) supported by reinforced concrete towers, named MNL-12 is presented. The impact of ferromagnetic, conductive parts of the pylons (reinforcing bars, billets and cross arm beams) on magnetic field distribution is investigated. The numerical calculations were performed in COMSOL Multiphysics program package on simplified 2D model. The main goal of the calculations was to examine the impact of currents induced in ferromagnetic conductive parts on magnetic field produced by currents in the power system’s conductors. The calculation results are presented graphically, as the diagrams of the magnetic flux density magnitude distribution in the tower plan, normal to the system’s axe. The calculation results demonstrated that the magnetic field of induced currents decreases the magnetic field produced by the currents of overhead power system.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Robert W Biederman ◽  
Loretta Gevenosky ◽  
Geetha Rayarao ◽  
RONALD WILLIAMS ◽  
Richard Lombardi ◽  
...  

Introduction: The evolution of pacemaker/ICD safety in the magnetic field has triggered considerable interest in more clinical routine use. However, many limitations to widespread adoption of this seemingly implausible idea just a few years ago remain: unresolved impact of the high magnetic field, RF amplitude and oscillatory forces on electronics with possible high field damage to capacitor, solenoid and microcircuitry. However, given recent vender refinements over the last 10 years, we hypothesized that the impact on such circuitry may be far less than expected. Method: Consecutive interrogation of 940 pts who underwent clinically indicated MRI were evaluated over 5 years. This cohort was comprised of neuro/neurosurgical (72%), orthopedic (11%) and cardiac (17%) cases. Routine interrogation was performed within 10 min of entry into the bore of a dedicated Cardiac MRI (GE, 1.5T, WI). As well, reinterrogation was performed within 10 min of departure MRI (average 21±12min). At the time of interrogation pre and post MRI, a separate, repeat interrogation was performed within 5 min of each other such that 2 sets of PM/ICD parameters were obtained pre and post MRI. Result: No complications to either pt or device occurred during the MRI comprising 564 PMs and 376 ICDs. A cardiologist was present guiding the interrogation, configuration, and reconfiguration of the PM/ICD as well was present for entire MRI. There were no significant differences in common clinical parameters. More importantly, there was no difference in any parameter when compared in any order pre to post MRI scan. See Table. Conclusion: Intrinsic variability and inherent changes triggered by MRI environments are clinically insignificant and statistically negligible thereby removing yet another of the last remaining fears and apprehensions for primary PM/ICD failure and destruction as we move towards a more uniform acceptance of this technology for clinically meaningful use, dissemination and acceptance.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1014 ◽  
Author(s):  
Essam R. EL-Zahar ◽  
Ahmed M. Rashad ◽  
Laila F. Seddek

The spotlight of this investigation is primarily the effectiveness of the magnetic field on the natural convective for a Fe3O4 ferrofluid flow over a vertical radiate plate using streamwise sinusoidal variation in surface temperature. The energy equation is reduplicated by interpolating the non-linear radiation effectiveness. The original equations describing the ferrofluid motion and energy are converted into non-dimensional equations and solved numerically using a new hybrid linearization-differential quadrature method (HLDQM). HLDQM is a high order semi-analytical numerical method that results in analytical solutions in η -direction, and so the solutions are valid overall in the η domain, not only at grid points. The dimensionless velocity and temperature curves are elaborated. Furthermore, the engineering curiosity of the drag coefficient and local Nusselt number are debated and sketched in view of various emerging parameters. The analyzed numerical results display that applying the magnetic field to the ferroliquid generates a dragging force that diminishes the ferrofluid velocity, whereas it is found to boost the temperature curves. Furthermore, the drag coefficient sufficiently minifies, while an evolution in the heat transfer rate occurs as nanoparticle volume fraction builds. Additionally, the augmentation in temperature ratio parameter signifies a considerable growth in the drag coefficient and Nusselt number. The current theoretical investigation may be beneficial in manufacturing processes, development of transport of energy, and heat resources.


2020 ◽  
Vol 10 (23) ◽  
pp. 8454
Author(s):  
Soontorn Odngam ◽  
Chaiyut Preecha ◽  
Prapaiwan Sanwong ◽  
Woramet Thongtan ◽  
Jiraphon Srisertpol

This research presents the design and construction of measuring instruments for a dipole magnetic field using a rotating coil technique. This technique is a closed-loop speed-control system where a Proportional-Integral (PI) controller works together with the intensity measurement of the magnetic field through the rotating coil. It was used to analyze the impact on the accuracy of the electromagnetic at speed ranges of 60, 90, and 120 rpm. The error estimation in the measurement of the normal dipole and skew dipole magnet caused by the steady-state error of the speed control system and the rotational search coil in whirling motion are demonstrated. Rotating unbalance, shaft coupling, and misalignment from its setup disturbed the performance of the speed control system as a nonlinear system.


2014 ◽  
Vol 32 (10) ◽  
pp. 1247-1261 ◽  
Author(s):  
L. Turc ◽  
D. Fontaine ◽  
P. Savoini ◽  
E. K. J. Kilpua

Abstract. Magnetic clouds (MCs) are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar–terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE) upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the shock obliquity. When the shock is in a quasi-parallel regime, the magnetic field direction varies significantly from the solar wind to the magnetosheath. In such cases, the magnetic field reaching the magnetopause cannot be approximated by the upstream magnetic field. Therefore, it is important to take into account the conditions at the bow shock when estimating the impact of an MC with the Earth's environment because these conditions are crucial in determining the magnetosheath magnetic field, which then interacts with the magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document