scholarly journals Effect of Layer Thickness on the Physical and Mechanical Properties of Sand Powder 3D Printing Specimens

2021 ◽  
Vol 9 ◽  
Author(s):  
Qing Xu ◽  
Lishuai Jiang ◽  
Changqing Ma ◽  
Qingjia Niu ◽  
Xinzhe Wang

The application of sand powder three-dimensional (3D) printing technology in the field of rock mechanics and mining engineering has tremendous potential, but it is still in the preliminary exploration stage. This study investigated the effect of printing layer thickness on the physical and mechanical properties of rock-like specimens with sand powder 3D printing. Quartz sand powder was used as the printing material, and the specimens were prepared with three different layer thicknesses of 0.2, 0.3, and 0.4 mm. Uniaxial compression tests with a combination of digital image correlation (DIC), acoustic emission (AE) and 3D microscope observations were performed to analyze the mechanical properties and failure patterns of the specimens during loading. Experimental findings showed that increasing the layer thickness from 0.2 to 0.4 mm would result in a decrease in the weight, density, uniaxial compression strength, and elastic modulus of the specimens. The stress-strain curve, deformation and failure patterns, crack growth process, and AE characteristics of the specimens with a layer thickness of 0.2 mm are similar to the AE characteristics of rock-like material, whereas the specimens with layer thicknesses of 0.3 and 0.4 mm deform like a ductile material, which is not appropriate for simulation of coal or rock mass. In future studies, rock-like specimens should be prepared with a small layer thickness.

Author(s):  
Parmo Parmo ◽  
Jean-Luc Hanus ◽  
Naima Belayachi ◽  
Patrice Bailly

The aim of this study was to determine the compressive mechanical properties and the energy absorption characteristics of a bio-composite material based on lime, wheat straw, and additives (protein and entraining agent). The selected samples with fiber to binder ratio of 30% were subjected to compression tests at different strain rates (1 mm/min, 10 mm/min, and 100 mm/min), in the perpendicular and parallel directions to fiber orientation. Image analysis supported with Digital Image Correlation (DIC) method is performed to follow longitudinal and lateral deformations, thus making it possible to evaluate elastic properties. The results show that the highest density and compressive strength in the parallel direction are ~349 kg/m3 and ~0.101 MPa, respectively. The perpendicular specimens at 100 mm/min of speed test showed the highest values of densification strain, stress plateau, energy efficiency, and absorbed-energy of 47.27%, 0.32 MPa, 16.98 %, and 13.84 kJ/m2, respectively. The values of Young’s modulus identified with DIC are significantly different from those determined by the slope of the linear part of the stress-strain curve. A slight influence of strain rate on mechanical properties is observed.


2018 ◽  
Vol 15 ◽  
pp. 104-108
Author(s):  
Luboš Řehounek ◽  
Petra Hájková ◽  
Petr Vakrčka ◽  
Aleš Jíra

Construction applications sometimes require use of a material other than construction steel or concrete – mainly in cases, where strength to weight ratio needs to be considered. A suitable solution to this problem are structures manufactured using the 3D printing process, as they have a very good strength to weight ratio (i.e.: Ti-6Al-4V – σ<sub>ult</sub> = 900 MPa and ρ = 4500 kg/m<sup>3</sup>). Trabecular structures are porous structures with local material characteristics identical to their commonly manufactured counterparts, but due to their geometry, they have different global mechanical properties and are suited for special applications. We designed and manufactured six variants of these structures and subjected them to uniaxial compression tests, nanoindentation tests and subsequently evaluated their differences and elastic moduli. The values of global moduli E are in the range of 2.55 GPa – 3.55 GPa for all specimens.


Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This paper is part of a study of earthen mixtures for 3D printing of buildings. To meet the ever-growing environmental needs, the focus of the paper is on a particular type of biocomposite for the stabilization of earthen mixtures&mdash;the rice husk-lime biocomposite&mdash;and on how to enhance its effect on the long-term mechanical properties of the hardened product. Having assumed that the shredding of the vegetable fiber is precisely one of the possible ways to improve the mechanical properties, we compared the results of uniaxial compression tests performed on cubic specimens made with both shredded and unaltered vegetable fiber, for three curing periods. The results showed that the hardened earthen mixture is not a brittle material in the strict sense, because it exhibits some peculiar behaviors, anomalous for a brittle material. However, being a &ldquo;designable&rdquo; material, its properties can be varied with a certain flexibility to get as close as possible to the desired ones. One of the peculiar properties of the hardened earthen mixture deserves further investigation, rather than corrections. This is the vulcanization that occurs (in a completely natural way) in the long term, thanks to the mineralization of the vegetable fiber by carbonation of the lime.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2774-2788
Author(s):  
Zhaozhe Yang ◽  
Xinhao Feng ◽  
Min Xu ◽  
Denis Rodrigue

To efficiently and economically utilize a wood-plastic biocomposite, an eco-friendly biocomposite was prepared using modified poplar fiber and polylactic acid (PLA) via 3D printing technology for the first time. First, the effects of poplar fiber (0, 1, 3, 5, 7, and 9%) on the mechanical and rheological properties of the printed biocomposites were investigated. Subsequently, the printing parameters, including printing temperature, speed, and layer thickness, were optimized to obtain the biocomposite with superior properties. Finally, four printing orientations were applied to the biocomposite based on the optimized printing parameters to study the effect of filament orientation on the properties of the biocomposite. Favorable printability and mechanical properties of the biocomposite were obtained at 5% poplar fiber. The optimal printing temperature of 220 °C, speed of 40 mm/s, and layer thickness of 0.2 mm were obtained to produce the desired mechanical properties of the biocomposite with the printing orientation in a longitudinal stripe. However, the printing parameters should be chosen according to the applications, where different physical and mechanical properties are needed to achieve efficient and economical utilization of the biocomposites.


Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This paper is part of a study of earthen mixtures for 3D printing of buildings. To meet the ever-growing environmental needs, the focus of the paper is on a particular type of bio-composite for the stabilization of earthen mixtures – the rice husk-lime bio-composite – and on how to enhance its effect on the long-term mechanical properties of the hardened product. Having assumed that the shredding of the vegetable fiber is precisely one of the possible ways to improve the mechanical properties, we compared the results of uniaxial compression tests performed on cubic specimens made with both shredded and raw vegetable fiber, for three curing periods. The results showed that the hardened earthen mixture is not a brittle material in the strict sense, because it exhibits some peculiar behaviors, anomalous for a brittle material. However, being a “designable” material, its properties can be varied with a certain flexibility to get as close as possible to the desired ones. One of the peculiar properties of the hardened earthen mixture deserves further investigation, rather than corrections. This is the vulcanization that occurs (in a completely natural way) in the long term, thanks to the mineralization of the vegetable fiber by carbonation of the lime.


2021 ◽  
pp. 073168442110140
Author(s):  
Hossein Ramezani-Dana ◽  
Moussa Gomina ◽  
Joël Bréard ◽  
Gilles Orange

In this work, we examine the relationships between the microstructure and the mechanical properties of glass fiber–reinforced polyamide 6,6 composite materials ( V f = 54%). These materials made by thermocompression incorporate different grades of high fluidity polyamide-based polymers and two types of quasi-UD glass fiber reinforcement. One is a classic commercial fabric, while the other specially designed and manufactured incorporates weaker tex glass yarns (the spacer) to increase the planar permeability of the preform. The effects of the viscosity of the polymers and their composition on the wettability of the reinforcements were analyzed by scanning electron microscopy observations of the microstructure. The respective influences of the polymers and the spacer on the mechanical performance were determined by uniaxial tensile and compression tests in the directions parallel and transverse to the warp yarns. Not only does the spacer enhance permeability but it also improves physical and mechanical properties: tensile longitudinal Young’s modulus increased from 38.2 GPa to 42.9 GPa (13% growth), tensile strength increased from 618.9 MPa to 697 MPa (3% growth), and decrease in ultimate strain from 1.8% to 1.7% (5% reduction). The correlation of these results with the damage observed post mortem confirms those acquired from analyses of the microstructure of composites and the rheological behaviors of polymers.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2350 ◽  
Author(s):  
Jun Peng ◽  
Sheng-Qi Yang

High temperature treatment has a significant influence on the mechanical behavior and the associated microcracking characteristic of rocks. A good understanding of the thermal damage effects on rock behavior is helpful for design and stability evaluation of engineering structures in the geothermal field. This paper studies the mechanical behavior and the acoustic emission (AE) characteristic of three typical rocks (i.e., sedimentary, metamorphic, and igneous), with an emphasis on how the difference in rock type (i.e., porosity and mineralogical composition) affects the rock behavior in response to thermal damage. Compression tests are carried out on rock specimens which are thermally damaged and AE monitoring is conducted during the compression tests. The mechanical properties including P-wave velocity, compressive strength, and Young’s modulus for the three rocks are found to generally show a decreasing trend as the temperature applied to the rock increases. However, these mechanical properties for quartz sandstone first increase to a certain extent and then decrease as the treatment temperature increases, which is mainly attributed to the high porosity of quartz sandstone. The results obtained from stress–strain curve, failure mode, and AE characteristic also show that the failure of quartz-rich rock (i.e., quartz sandstone and granite) is more brittle when compared with that of calcite-rich rock (i.e., marble). However, the ductility is enhanced to some extent as the treatment temperature increases for all the three examined rocks. Due to high brittleness of quartz sandstone and granite, more AE activities can be detected during loading and the recorded AE activities mostly accumulate when the stress approaches the peak strength, which is quite different from the results of marble.


2020 ◽  
pp. 1-17
Author(s):  
W.-c. Xie ◽  
X.-l. Wang ◽  
D.-p. Duan ◽  
J.-w. Tang ◽  
Y. Wei

ABSTRACT Stratospheric airships are promising aircraft, usually designed as a non-rigid airship. As an essential part of the non-rigid airship, the envelope plays a significant role in maintaining its shape and bearing the external force load. Generally, the envelope material of a flexible airship consists of plain-weave fabric, composed of warp and weft fibre yarn. At present, biaxial tensile experiments are the primary method used to study the stress–strain characteristics of such flexible airship materials. In this work, biaxial tensile testing of UN-5100 material was carried out. The strain on the material under unusual stress and the stress ratio were obtained using Digital Image Correlation (DIC) technology. Also, the stress–strain curve was corrected by polynomial fitting. The slope of the stress–strain curve at different points, the Membrane Structures Association of Japan (MSAJ) standard and the Radial Basis Function (RBF) model were compared to identify the stress–strain characteristics of the materials. Some conclusions on the mechanical properties of the flexible airship material can be drawn and will play a significant role in the design of such envelopes.


2016 ◽  
Vol 720 ◽  
pp. 130-140
Author(s):  
Berrak Bulut ◽  
Ziya Engin Erkmen ◽  
Eyup Sabri Kayali

Hydroxyapatite (HA) is a very popular bioceramic for orthopedic and dental applications. Although HA has excellent biocompatibility, its inferior mechanical properties make it unsuitable for load-bearing implant applications. Therefore, HA should be strengthened by a secondary phase for robust mechanical properties. The aim of this study was to compare the properties of HA-Al2O3 (HAC) and HA-ZrO2 (HZC) composites with the addition of 5 and 10 wt% commercial inert glass (CIG); independently. The mixture powders were pressed and then, the pellets were sintered between 1000-1300 °C for 4 hours. Microstructural characterizations were carried out using SEM + EDS and XRD, while hardness and compression tests were done to measure mechanical properties. In order to investigate the biocompatibility behavior of the samples in vitro and in vivo tests were performed. The mechanical properties of HAC composites increased with rising CIG content and increasing sintering temperature. For HZC composites, increasing CIG content caused an elevation in hardness and a decrease in compressive strength values at 1300 °C. The composites having the best physical and mechanical properties also showed improved bioactive properties at in vitro test. In this study, the ideal composite was selected as HZC5 sintered at 1200 °C depending on the microstructure, mechanical and biocompatibility properties.


Sign in / Sign up

Export Citation Format

Share Document