scholarly journals Size Effect of Fe3O4 Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid

2021 ◽  
Vol 9 ◽  
Author(s):  
Fang Chen ◽  
Nasir Ilyas ◽  
Xiaobing Liu ◽  
Zhenggui Li ◽  
Shengnan Yan ◽  
...  

It is well known that magnetic nanofluids are widely applied in various fields ranging from heat transfer to miniature cooling, and from damping to sealing, due to the mobility and magnetism under magnetic field. Herein, the PFPE-oil based magnetic nanofluids with superior magnetization and dispersion stability were obtained via regulating reaction temperature. The structures of particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The size effects of particles on the magnetism and coating effect of particles, and on the stability and saturation magnetization of the fluids were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM) and density instrument, respectively. The results indicate that the impurity phase FeOOH only appear in the sample prepared at 18°C and the average size of Fe3O4 nanoparticles reduces from 120 to 20 nm with raising reaction temperature. The saturation magnetization of Fe3O4 particles increases firstly and then reduces with increasing particle size, which is affected by the thickness of magnetic dead layer and impurity phase FeOOH. The Fe3O4 particles could be chemically coated by PFPE-acids, and the coated mass is a little affected by particle size. The stability of the nanofluids lowers while the saturation magnetization increases firstly and then decrease with increasing particle size. At reaction temperature of 60°C, Fe3O4 particles of 25 nm and the nanofluids with superior stability and saturation magnetization were obtained. Our results indicate that the control of nanoparticles size by regulating reaction temperature can be a useful strategy for preparing magnetic nanofluids with desirable properties for various potential applications.

2011 ◽  
Vol 347-353 ◽  
pp. 3981-3984
Author(s):  
Qing Yun Zeng ◽  
Qing Qing Chang ◽  
Xin Yu Ye

The (Y,Eu)2O3 precursor prepared by microwave with ultrasonic-assisted co-precipitation is superior to the one prepared by co-precipitation of conventional approach as well as co-precipitation assisted by microwave. The effect of preparation conditions on the morphology and particle size of (Y,Eu)2O3 precursor was completely investigated in this study. The ideal conditions were optimized as 0.25M Ln3+ ions concentration, 80°C reaction temperature, 90 minutes reaction time and 0 minute ageing time. Consequently, the (Y,Eu)2O3 precursor in the needle-like shape with average size of 0.25μm in diameter was obtained. The possible mechanism was also presented.


2009 ◽  
Vol 1174 ◽  
Author(s):  
Jaekeun Yu ◽  
Jwayeon Kim ◽  
Jeoungsu Han

AbstractBy using tin chloride solution as the raw material, a nano-sized tin oxide powder with average particle size below 50 nm is generated by spray pyrolysis reaction. This study also examines the influences of the reaction parameters such as reaction temperature and the concentration of raw material solution on the powder properties. As the reaction temperature increases from 800 to 850 ℃, the average particle size of the generated powder increases from 20 nm to 30 nm. As the reaction temperature reaches 900 ℃, the droplets are composed of nano-particles with average size of 30 nm, while the average size of individual particles increases remarkably up to 80˜100 nm. When the tin concentration reaches 75 g/L, the average particle size of the powder is below 20 nm. When the tin concentration reaches 150 g/L, the droplets are composed of nano particles with average size around 30 nm, whereas the average size of independent particles increases up to 80˜100 nm. When the concentration reaches 400 g/L, the droplets are composed of nano-particles with average size of 30 nm.


2008 ◽  
Vol 01 (03) ◽  
pp. 189-193 ◽  
Author(s):  
DIPAK MAITY ◽  
JUN DING ◽  
JUN-MIN XUE

Monodispersed magnetite ( Fe 3 O 4) nanoparticles can be synthesized by thermal decomposition of iron(III) acetylacetonate, Fe ( acac )3. High saturation magnetization M S of the magnetite particles is extremely important to realize the full potential of magnetite materials in biomedical application. In this work, we have studied the different effects (time, temperature and surfactant) on structure and magnetic properties of Fe 3 O 4 nanoparticles. The M S of the particles are enhanced after the synthesis at a higher reaction temperature and/or a longer reaction time. However, the increase in reaction temperature and/or reaction time resulted in particle size increase and the broadening of the particle size distribution. In this work, high M S value of the magnetite particles has been achieved through adopting surfactant or modification of solvent to overcome the temperature and time effects, while the smaller size particles with an acceptable size distribution has been maintained. Size and morphology of the particles were studied by TEM while magnetic properties of the particles were measured using VSM. The saturation magnetization M S of the particles can be increased at higher reaction temperature and/or longer reaction time, while narrow size distribution of the particles can be maintained either by the selective adsorption of oleic acid to the particle surface or by synthesizing them using solvent free thermal decomposition reaction.


Author(s):  
Harpreet Kaur Khanuja ◽  
Harish Dureja

Background: The term homogenize means "to force or provide coalesce." Homogenisation is a process to attain homogenous particle size. The objective of homogenisation process is to use fluid force to split the fragments or tiny particles contained in the fluids into minimal dimen-sions and form a sustainable dispersion suitable for further production. Results: The present study focus on the use of the homogenisation in drug delivery system. Homogenisation process aims to achieve the particle size in micro-and nano- range as it affects the different parameters in the formulation and biopharmaceutical profile of the drug. Particle size reduction plays a crucial role in influencing drug dissolution and absorption. The reduced particle size enhances the stability and therapeutic efficacy of the drug. Homogenisa-tion technology ensures to achieve effective, clinically efficient, and targeted drug delivery with minimal side effects Conclusion: Homogenization technology is an efficient and easy method of size reduction to increase solubility, bioavailability, and stability of drug carriers. This article gives an overview of the process attributes affecting the homogenisation process, the patenting of homogeniser types, design, the geometry of valves and nozzles, and its role in drug delivery.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. Tajdidzadeh ◽  
B. Z. Azmi ◽  
W. Mahmood M. Yunus ◽  
Z. Abidin Talib ◽  
A. R. Sadrolhosseini ◽  
...  

The particle size, morphology, and stability of Ag-NPs were investigated in the present study. A Q-Switched Nd: YAG pulsed laser (λ= 532 nm, 360 mJ/pulse) was used for ablation of a pure Ag plate for 30 min to prepare Ag-NPs in the organic compound such as ethylene glycol (EG) and biopolymer such as chitosan. The media (EG, chitosan) permitted the making of NPs with well dispersed and average size of Ag-NPs in EG is about 22 nm and in chitosan is about 10 nm in spherical form. Particle size, morphology, and stability of NPs were compared with distilled water as a reference. The stability of the samples was studied by measuring UV-visible absorption spectra of samples after one month. The result indicated that the formation efficiency of NPs in chitosan was higher than other media and NPs in chitosan solution were more stable than other media during one month storage. This method for synthesis of silver NPs could be as a green method due to its environmentally friendly nature.


2021 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Hernán Martinelli ◽  
Claudia Domínguez ◽  
Marcos Fernández Leyes ◽  
Sergio Moya ◽  
Hernán Ritacco

In the search for responsive complexes with potential applications in the formulation of smart dispersed systems such as foams, we hypothesized that a pH-responsive system could be formulated with polyacrylic acid (PAA) mixed with a cationic surfactant, Gemini 12-2-12 (G12). We studied PAA-G12 complexes at liquid–air interfaces by equilibrium and dynamic surface tension, surface rheology, and X-ray reflectometry (XRR). We found that complexes adsorb at the interfaces synergistically, lowering the equilibrium surface tension at surfactant concentrations well below the critical micelle concentration (cmc) of the surfactant. We studied the stability of foams formulated with the complexes as a function of pH. The foams respond reversibly to pH changes: at pH 3.5, they are very stable; at pH > 6, the complexes do not form foams at all. The data presented here demonstrate that foam formation and its pH responsiveness are due to interfacial dynamics.


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Philip James Camp ◽  
John Philip

We probe the influence of particle size polydispersity on field-induced structures and structural transitions in magnetic fluids (ferrofluids) using phase contrast optical microscopy, light scattering and Brownian dynamics simulations. Three...


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


Clay Minerals ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 453-465 ◽  
Author(s):  
I. Gonzalez ◽  
E. Galan ◽  
A. Miras ◽  
P. Aparicio

AbstractAn attempt has been made to assess new potential applications for the Bailén clays, traditionally used for manufacturing bricks, based on mineralogical, chemical, particle size, plasticity and firing results. Raw materials and mixtures used by the local factory were selected and tested with the addition of some diatomite, feldspar or kaolin. Based on their properties, clay materials from Bailén might be suitable for making porous red wall tiles, clinker, vitrified red floor tiles and porous light-coloured wall tiles by pressing; the first could be manufactured from the raw materials and mixtures currently used by the local manufactures. On the other hand, stoneware shaped by extrusion, such as perforated bricks, facing bricks and roofing tiles, can be also manufactured from the mixtures used at the factory if they contain 20-25% carbonate and small amounts of iron oxides; lightweight bricks require black and yellow clays with diatomite.


2012 ◽  
Vol 519 ◽  
pp. 87-91 ◽  
Author(s):  
Xia Ni Huang ◽  
Zhang Han Wu ◽  
Ke Cao ◽  
Wen Zeng ◽  
Chun Ju Lv ◽  
...  

In the present investigation, the Al-C-KCl composite powders were prepared by a ball milling processing in an attempt to improve the hydrogen evolution capacity of aluminum in water. The results showed that the hydrogen generation reaction is affected by KCl amount, preparation processing, initial aluminum particle size and reaction temperature. Increasing KCl amount led to an increased hydrogen generation volume. The use of aluminum powder with a fine particle size could promote the aluminum hydrolysis reaction and get an increased hydrogen generation rate. The reaction temperature played an important role in hydrogen generation rate and the maximum hydrogen generation rate of 44.8 cm3 min-1g-1of Al was obtained at 75oC. The XRD results identified that the hydrolysis byproducts are bayerite (Al(OH)3) and boehmite (AlOOH).


Sign in / Sign up

Export Citation Format

Share Document